Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, the processing of the data of a 3D light detection and distance measurement (LiDAR) sensor mounted on a mobile robot is demonstrated, introducing an innovative methodology to manage the data and extract useful information. The LiDAR sensor is placed on a mobile robot which has a modular design that permits the easy change of the number of wheels, was designed to travel through several environments, and saves energy by changing the number and arrangement of the wheels in each environment. In addition, the robot can recognize landmarks in a structured environment by using a classification technique on each frame acquired by the LiDAR. Furthermore, considering the experimental tests, a new simple algorithm based on the LiDAR data processing together with the inertial data (IMU sensor) through a Kalman filter is proposed to characterize the robot’s pose by the surrounding environment with fixed landmarks. Finally, the limits of the proposed algorithm have been analyzed, highlighting new improvements in the future prospective development for permitting autonomous navigation and environment perception with a simple, modular, and low-cost device.
EN
Whatever the type of surgery related to inner organs, traditional or robotic, the contact with them during surgery is a key moment for pursuing the intervention. Contacts by means of surgery instruments namely scalpels, staples, clamps, graspers, etc. are decisive moments. False, and erroneous touching and manoeuvring of organs operated on can cause irreversible damage as regard morphological aspects (outer impact) and physiological aspects (inner impact). The topic is a great challenge in the effort to measure and characterize damages. In general, electrical instruments for surgery employ the following technologies: ultrasound, radiofrequency (monopolar, and bipolar), and laser. They all result in thermal damages difficult to evaluate. The article proposes a method for a pre-screening of organ features during robotic surgery sessions by pointing out mechanical and thermal stresses. A dedicated modelling has been developed based on experimental activities during surgery session. The idea is to model tissue behaviour from real images to help surgeons to be aware of handling during surgery. This is the first step for generalization by considering the type of organ. The measurement acquisitions have been performed by means of an advanced external camera located over the surgery quadrant. The modelling and testing have been carried out on kidneys. The modelling, carried out through Comsol Multiphysics, is based on the bioheat approach. A further comparative technique has been implemented. It is based on computer vision for robotics. The findings of human tissue behavior exhibit reliable results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.