Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The demand for feldspar as a raw material for various industrial applications continuously increases. Feldspar is a primary raw material in manufacturing ceramics, glass, fillers, welding electrodes, and enamel. Feldspar is often associated with iron oxide, which decreases its economic value and hinders its industrial application. The present work aimed at reducing iron oxide content in Egyptian feldspar ore from the Wadi Zerabi locality. Ball milling was used for preparing feldspar feed of size -250+45μm. Carpco dry high-intensity magnetic separation followed by acid leaching processes were carried out in order to decrease the iron contamination and increase the feldspar content. A Box-Behnken statistical design was used to optimize the magnetic separation results. From a feldspar feed containing 1.40% Fe2O3, a non-magnetic concentrate of 0.25% Fe2O3 was obtained. The Fe2O3 removal reached up to 82% with a high yield as the % weight of non-magnetic feldspar reached up to 97.5%. The leaching process further reduced the iron oxide content down to 0.19 %. Also, the feldspar whiteness was improved from 65.17% in the original ore to 85.60% in the leached product.
EN
The investigation of surface modification of Egyptian calcium carbonate via polymers was achieved with simultaneous ultra-fine grinding. Attrition mill and planetary mill were used for wet and dry grinding, respectively. The parameters affecting the grinding were studied such as ball number, speed and grinding time. The rheological characteristics of the aqueous calcium carbonate suspensions were studied in the presence of different types of polymers. The results indicated that the mechanical force could clearly affect the modification characteristics of calcium carbonate due to its mechanochemical effects. The viscosity of calcium carbonate suspension depends on the volume percentage or weight percentage. The dispersing agent increases the solid concentration for a given particle fineness.
EN
Environmental pollution by lead (Pb2+) and zinc (Zn2+) ions has become an important issue due to its harmful effects on human health and environment. This work aims to evaluate the application of surface modified Egyptian bentonite mineral by acid activation using H2SO4 and thermal treatment as an adsorbent to remove lead (Pb2+) and zinc (Zn2+) ions from aqueous solution. X-ray diffraction (XRD), Fourier Transformed Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) techniques were used to investigate the modified bentonite. The impact of organic and inorganic dispersants on rheological characteristics of bentonite suspensions was investigated. Adsorption of Pb2+ and Zn2+ ions using modified bentonite mineral was performed with different adsorbent doses and pH values. Removal efficiencies of lead and zinc are 99.67% and 99%, respectively with adsorbent dose of 25 g/l at pH of 6.2.
EN
Egyptian oil shale from Red Sea area is upgraded via oil agglomeration technique to achieve a clean fuel. A representative sample is characterized to identify its undesirable components and its liberation size. The quartz, apatite, calcite, siderite and anhydrite are the main gangue minerals. The sample was pulverized to less than 20 µm for efficient liberation. The impact of anionic (Calcium dodecyl benzene sulfonate, CDBS) or/and cationic (Cetrimonium bromide, CTAB) surfactants on the zeta-potential and agglomeration process was investigated in presence of different kerosene concentrations. A concentrate of 62% kerogen with 95% recovery was obtained from feed of 29% kerogen using 0.1% CTAB/CDBS mixture in 2% kerosene emulsion.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.