The study analyzes changes in the physico-chemical parameters in a 400 cm2 artificial water reservoir with distilled water, exposed to a 2-week (±2 days) period of atmospheric conditions in Krakow. After nearly 500 days, dry and wet deposition caused a shift from neutral to acidic pH levels (7.30–5.12, averaging 6.22 pH) and an average electric conductivity of 19.5 µS/cm (1.6–143.0 µS/cm). The study investigated chemical and biological pollutants, including pollen and fungal spores. Three distinct air quality periods were identified: (1) characterized by vehicle and combustion-related pollutants (Oct-Jan), (2) a transitional phase with increased biological particles (Feb-May), and (3) dominated by pollen and fungal spores (Jun-Sep). Despite peak air pollution in the warmest months, air temperature showed an inverse relationship with pollutant concentration, possibly due to decreased air humidity. Precipitation positively impacted air quality. The artificial reservoir received a total of 0.7 kg of air pollutants (723.6mg/m3 of surface water table). This corresponds to an annual load of 0.5 kg (551.4 mg) and a daily load of 1.51 mg. The reservoir’s pollutant capture capacity was estimated at 28% ±21% (mean±SD), with a critical value of 12%. The study evaluated Krakow’s surface water reservoirs’ capacity to mitigate air pollution, indicating potential benefits for urban air quality.
The chemical composition of surface waters of the Przemsza River flowing through Upper Silesia (in southern Poland) is strongly affected by Zn and Pb ore, and less by Carboniferous hard coal deposits. The chemical type of surface water is Ca-HCO3. In the waters, three groups of metals and metalloids were found that directly interfere with the mineralization of the deposit. Although genetically related to the same deposit, each group exhibits a different fate in the environment. A typical deposit association is Pb-Zn-Ag-As-Sb-Hg. The first group of metals in surface waters is consistent with the typical association of the ore Zn-Pb-Cd-(Tl), the second includes Ag-Sb-Hg, and the third includes the additives in the zinc and lead ore Co-Ni-Mo-Mn: [formula]. Depending on the pH-Eh conditions, metals and metalloids precipitate out of the solution or sorb on solid particles. The concentrations of individual groups of metals are interdependent but show different environmental fates along the river course. The natural process of the enrichment of surface waters with Zn-Pb-Cd-(Tl) is by water circulation in a rock matrix naturally rich in the metals and draining groundwaters by the river. Under oxidizing and slightly alkaline conditions, Ag-Sb-Hg incorporated into the soluted chemical compounds, may, when the physicochemical parameters of the waters change, be adsorbed and/or precipitated. The presence and ratio of concentrations of Co-Ni-Mo-Mn with respect to zinc are almost identical, differing only in concentration.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.