Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper aims at numerical finite element (FEM) research of guided Lamb waves propagation in multidirectional composite plates. All simulations were conducted in the Abaqus/CAE software by using the dynamic/explicit solver. The material considered in this work was carbon/epoxy composite laminate with [90⁰/θ/θ/θ/-θ/-θ/-θ/90⁰] stacking sequence where θ set was equal 0⁰, 30⁰, 45⁰, 60⁰ and 90⁰. The main goal of the analysis was to evaluate the influence of fiber orientation angles θ on propagation behavior of the separate symmetric S0 and asymmetric A0 Lamb wave modes. Numerical model was created by using the C3D8R brick element. The Lamb waves were generated by using concentrated force with 200 kHz frequency. The acoustic signal generated by travelling wave was registered at two nodes that represent the acoustic emission sensors. Obtained results were presented in tabular form where separate mode velocities were collected and on the normalized displacement versus time plots depicted registered wave signals. In addition, the contour diagrams and through-thickness deformations plots were created to present behavior of the extensional and the flexural modes. The greatest value of the S0 mode velocity was obtained for unidirectional laminates whereas the lowest for composite plate with 45⁰ fiber orientation angle. The asymmetric mode found to generate slightly greater deformation of plate in XZ plane than the symmetric. Recognition of the Lamb wave behavior in multidirectional laminates will allow to better planning the experimental acoustic emission tests.
EN
This paper aims at experimental research of the effect of hybrid interface (carbon/glass fibers) on delamination resistance in unidirectional fiber reinforced polymer (FRP) composite laminates under the mode I opening load conditions. Three group of laminates exhibiting different combinations of reinforcing materials at delamination plane were tested. Critical strain energy release rates were determined by using the double cantilever beam (DCB) tests in accordance with the ASTM D5528 Standard. Values of the GIC were calculated by using classical data reduction schemes and they were compared with values obtained by using an alternative compliance based beam method (CBBM). For precise detection of delamination onset all tests were additionally supported by registration of the acoustic emission (AE) signal. Contribution of mixed-modes were evaluated by using numerical finite element analysis. Obtained outcomes revealed, that differences in the mode I c-SERR values obtained by using four different methods were insignificant. Moreover, the greatest value of the GIC was determined for laminates with hybrid interface and it was equal 0.24 N/mm.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.