Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Compounds containing triple bonds are lately in the centre of interest of many research groups. This is mainly connected with their usefulness as substrates to obtain complex compounds with various applications in different areas of science, industry and medicine [1–5]. Because of that many researchers are interested in methods of synthesis of such compounds. As the demand for derivatives with triple bonds is quite big and the one universal method of synthesis does not exist, the new ones are developed or these already known are improved. To enable choosing the best method for synthesis of acetylene derivatives, this review is presented. The oldest methods based on elimination reaction are mentioned [6–9], whereas those enabling incorporation of acetylene unit into more complicated compounds are described more thoroughly [10–92]. The latter methods based on homo- or heterocoupling lead to symmetrical [10–25] and unsymmetrical acetylene and bisacetylene derivatives [26–92]. The most popular reactions such as Glaser reaction (Scheme 1) [10–12], Cadiot-Chodkiewicz reaction (Schemes 11 and 12) [26–49], Hay reaction (Scheme 13) [13, 14] as well as Sonogashira-Hagihara reaction [50–69] and their modifications (Tab. 3) [57] are described. Moreover, the influence of main parameters such as type of substrate used, ratio of reagents, catalyst, base, solvent, reaction time and temperature on the reaction yield is presented (Tabs 1–4) [14, 18, 23, 25, 50–58, 69–78].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.