Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Structural monitoring systems are widely adopted to monitor the behaviour of structures during forced vibration testing or natural excitation. Structural monitoring systems can be found in a number of common structures including aircrafts, ships, bridges, mechanical and civil structures. For example, some building design codes mandate that structures located in regions of high seismic activity have structural monitoring systems installed. This paper is focused on selected problems review of the health monitoring of tall type buildings and automation. The actual problem in structural health monitoring (SHM) is to find the structural damage and its location by performing some statistical pattern recognition on the measured data termed as feature extraction. The damage caused by environmental loads should be repaired; otherwise, it will expand with time and might lead to complete system failure. Dynamic parameters such as velocity, acceleration, and displacement play a significant role in determining the structure dynamics. As well as this paper highlights comprehensive survey about monitoring system used in civil structures (buildings) involving the issues such as influence of different outer forces on buildings and other critical methods for proper analysis of monitoring system used in tall type buildings. Additionally, wide-scale review related to an automation aspect of structural health monitoring of buildings has been presented. A significant observation from this review is that although there are many more SHM studies being reported, the investigators, in general, have not yet fully embraced the well-developed tools from statistical pattern recognition. As such, the discrimination procedures employed are often lacking the appropriate rigor necessary for this technology to evolve beyond demonstration problems carried out in laboratory setting.
EN
In recent years, there has been an increasing interest in the adoption of emerging sensing technologies for instrumentation within a variety of structural systems in civil and building engineering. Wireless and fiber bragg grating sensors are emerging as sensing paradigms that the structural engineering field has begun to consider as substitutes for traditional tethered monitoring systems. A benefit of each sensors structural monitoring systems is that they are inexpensive to install because extensive wiring is no longer required between sensors and the data acquisition system. Researchers has been discovering that wireless and fibber bragg grating sensors are an exciting technology that should not be viewed as simply a substitute for traditional tethered monitoring systems. Rather, these sensors can play greater roles in the processing of structural response data; this feature can be utilized to screen data for signs of structural damage. Also, sensors have limitations that require novel system architectures and modes of operation. This paper is intended to present a summary review of the collective experience the structural engineering community has gained from the use of wireless and fiber bragg grating sensors for monitoring structural performance and health of tall type buildings.
EN
The paper is focusing on selected problems of health monitoring of tall type buildings. The actual problem in structural health monitoring (SHM) is to find the damages and its location by performing some statistical pattern recognition based on the measured data termed as feature extraction. The damage caused by environmental loads should be repaired; otherwise, it will expand with time and might lead to complete system failure. Dynamic parameters, such as velocity, acceleration and displacement, play a significant role in determining the structure dynamics. This paper is focusing on smart wireless sensors application into health monitoring systems of tall type buildings operating into hazardous environment and selected methods for data analysis obtained from the monitoring system. Smart sensors can locally process measured data and transmit only the significant information via wireless communication. As a network, wireless sensors extend the capability. Significant future developments of smart wireless sensors technology in tall type buildings in hazardous environment come by way of multi-disciplinary research efforts encompassing fields such as data analysing, signal processing, structural dynamics, motion and environmental sensing hardware, computational hardware, smart materials, data telemetry and statistical pattern recognition, as well as other fields yet to be defined. Specification issues that require automation of the decision making process in the evaluation of the technical state of the tall type structure have been also discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.