Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 90

Liczba wyników na stronie
first rewind previous Strona / 5 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 5 next fast forward last
EN
Nowadays (August 2017) position data can be obtained generally from satellite navigation systems (SNS), such as GPS and GLONASS, and satellite based augmentation systems (SBAS) which can be either global, such as EGNOS, GAGAN, MSAS and WAAS, or regional, such as NAVIC (IRNSS) in India. Two new global SNSs, Galileo and BeiDou, three new global SBASs, SDCM, KASS and SNAS, and one new regional SBA, QZSS in Japan, are under construction. The generic name given to all these abovementioned systems is GNSS (Global Navigation Satellite Systems). This paper presents details of the following: changes that have occurred in the cumulative core revenue in different GNSS market segments (road, Location Based Service LBS, surveying, agriculture, timing & synchronization, aviation, maritime, drones and rail in 2017) in the last 8 years; an overview of the GNSS industry and location-based services in the world; details of current and future GNSS market evolution; GNSS unit shipments in 13 different categories of maritime application; the frequency and constellation capabilities of GNSS receivers; GNSS frequencies that will be common in the future; the adoption of multi-constellation, multi-frequency and dual-frequency as key enablers of improved accuracy and integrity; GNSS services available for civil and authorized users, and multiple signals in the case of all four global SNSs.
EN
Since many years the most frequently method used for position fix in transport are global satellite navigation systems (SNS) as GPS and GLONASS and Satellite Based Augmentation System as EGNOS, GAGAN, MSAS and WAAS. Next global SNS (Galileo and BeiDou) and SBAS (SDCM) and KAAS) are under construction. The generic name given to all these mentioned above systems is Global Navigation Satellite System (GNSS). Since 2010 GNSS Market Report, edited by the European GNSS Agency (GSA), takes a comprehensive look at the global GNSS market providing detailed analysis per market segment (currently 9 segments) and application type (currently depending on segment 4, 8, 11 or 13). In order to show the different distributions of these two parameters in different continents the world was divided into six regions (European Union, Russia and Europe without European Union, North America, Asia‒Pacific, Middle East and Africa, South America and Caribbean). The distributions of installed base of GNSS device and total revenue of GNSS devices sales by region and application in selected years for all four modes of transport (area, maritime, rail and road) are presented. In these analysis new and emerging GNSS trends by all these modes and the population numbers in each region was taken into account also.
3
Content available Sources of error in satellite navigation positioning
EN
An uninterrupted information about the user’s position can be obtained generally from satellite navigation system (SNS). At the time of this writing (January 2017) currently two global SNSs, GPS and GLONASS, are fully operational, two next, also global, Galileo and BeiDou are under construction. In each SNS the accuracy of the user’s position is affected by the three main factors: accuracy of each satellite position, accuracy of pseudorange measurement and satellite geometry. The user’s position error is a function of both the pseudorange error called UERE (User Equivalent Range Error) and user/satellite geometry expressed by right Dilution Of Precision (DOP) coefficient. This error is decomposed into two types of errors: the signal in space ranging error called URE (User Range Error) and the user equipment error UEE. The detailed analyses of URE, UEE, UERE and DOP coefficients, and the changes of DOP coefficients in different days are presented in this paper.
PL
We wszystkich gałęziach transportu (lotniczym, drogowym, kolejowym i morskim) pozycja użytkownika może być określana za pomocą nawigacyjnych systemów satelitarnych (NSS) - dwóch globalnych, amerykańskiego GPS i rosyjskiego GLONASS oraz satelitarnych systemów wspomagających SBAS, w Europie EGNOS (European Geostationary Navigation Overlay Service). W artykule opisano obecny stan jego trzech segmentów, kosmicznego, naziemnego i użytkownika, jego trzech serwisów: otwartego (OS), bezpieczeństwa życia (SoL) i dostępu do danych (EDAS).
EN
In all modes of transport (area, road, rail and maritime) user's position can be obtained from satellite navigation systems, two global -American GPS and Russian GLONASS, and satellite based augmentation system SBAS, in Europe EGNOS (European Geostationary Navigation Overlay Service). Current its three segments, spatial, terrestrial and user, all three services - Open Service (OS), Safety of Life (SoL) and EGNOS Data Access Service (EDAS) are presented in this paper.
EN
Currently (April 2016) uninterrupted information about a ship’s position can be obtained from specialized electronic position-fixing systems, in particular, Satellite Navigation Systems (SNSs) such as GPS and GLONASS and Satellite Based Augmentation Systems (SBASs) such as EGNOS or WAAS. The generic name given to all the above mentioned systems is Global Navigation Satellite Systems (GNSS). Many models, designed for the ship’s bridge and provided by about a dozen manufacturers, are available on the world market. In Europe, one of the most comprehensive sources of knowledge on the global GNSS market is a report published, on average, every 15 months by the European GNSS Agency GSA. Another receiver survey is published each year in the January number of the magazine “GPS World”. The detailed analysis of market report and receiver survey, possible use of EGNOS and Galileo in the maritime market, and different maritime applications of GNSS equipment are described in this paper.
EN
Spatial segment is one of three segments of each satellite navigation systems (SNS). Nowadays two SNSs, GPS and GLONASS, are fully operational, two next SNSs, BeiDou in China and Galileo in Europe, are in final phase of the construction. In the case of China system this segment will consist of 35 satellites with three types of orbits ? medium (MEO), geostationary (GEO) and inclined geosynchronous (IGSO). As GEO and IGSO satellites can be used in China and Asia-Pacific region only, BeiDou MEO constellation with 27 fully operational satellites will be taken into account in this paper. The orbital planes of the Galileo constellation will be divided in “slots” that contains at least one operational satellite. The Galileo reference constellation has 24 nominal orbital positions or operational slots in MEO homogeneously distributed in 3 orbital planes; i.e. 8 slots equally spaced per plane. As the error of user’s position obtained from both systems depends on geometry factor DOP (Dilution Of Precision) among other things the knowledge of the number of satellites visible by the user above given masking elevation angle Hmin and the distributions of DOP coefficient values, GDOP in particular, is very important. The lowest and the greatest number of satellites visible in open area by the observer at different latitudes for different Hmin, the percentage of satellites visible above angle H, distributions (in per cent) of satellites azimuths and GDOP coefficient values for different Hmin for BeiDou and Galileo systems at different latitudes are presented in the paper.
PL
Powslały wJaponii system QZSS (Quasi-Zenitalny System Satelitarny) zapewnia regionalny serwis nawigacji satelitarnej (w tym również usługi wspomagające) w Azji Wschodniej i Oceanii. System ten został zbudowany w celu zapewnienia możliwości określania pozycji za pomocą systemu satelitarnego w miejskich kanionach i regionach górzystych. Opisano segment kosmiczny obejmujący satelity na nachylonych orbitach geosynchronicznych (IGSO), podano parametry wszystkich szesciu sygnałów depesz nawigacyjnych wysyłanych przez te satelity. Opisano segment naziemny z 11 stacjami, segment użytkownika ze zintegrowanymi odbiornikami (QZSS i inne nawigacyjne systemy satelitarne), możliwosci i zastosowania systemu obecnie i w przyszłości.
EN
The Quasi - Zenith Satellite System (QZSS), developed by Japan, provides a regional satellite navigation service (augmentation also) in East Asia and Oceania. QZSS was developed to provide position service in urban canyons and mountainous environments. Spatial segments with Inclined GeoSyn-chronous Orbit (IGSO) satellites, the parameters of all six signals transmitted by satellites, all six navigation messages, terrestrial segment with 11 stations, user segment with integrated (QZSS and other satellite navigation system) receivers and the system performance and its use today and in the future are described in this paper.
PL
Indie są czwartym, po USA, Rosji i Japonii, państwem mającym dwa własne systemy satelitarne, regionalny NAVIC (wcześniejsza nazwa IRNSS) i wspomagający GAGAN. NAVIC będzie niezależnym, autonomicznym systemem, obejmującym zasięgiem Indie i rejony leżące w odległościach do 1500 km od granic. W kwietniu 2016 roku wprowadzeniem na orbitę ostatniego satelity zakończono budowę systemu. W dniu 30 grudnia 2013 system GAGAN uzyskał certyfikat umożliwiający wykorzystywanie sygnałów w przestrzeni do celów nawigacyjnych, przez transport lotniczy w szczególności. Omówiono segment kosmiczny satelitów, ich emisję, segment naziemny oraz pierwsze odbiorniki obydwu systemów.
EN
India is the fourth country, after USA, Russia and Japan, with two own satellite systems, regional NAVIC (earlier named IRNSS) and based augmentation GAGAN. NAVIC will be an independent and autonomous system aiming a service area of about 1500 km around India. In April 2016 with the last launch of constellation's satellite, the construction of the system was finished. On 30 December 2013 GAGAN system obtained the certification to use the signal in space for navigation purposes, area transport, in particular. Spatial segment, the signals transmitted by satellites, terrestrial segment and the first receivers of both systems are described in this paper.
EN
Nowadays (July 2016) we can distinguish four modes of transport – air, maritime, rail and road. In each mode the continuous knowledge of the current user’s position is one of the most important parameters of safety and economy of the transport. The information about position can be obtained from satellite navigation systems SNS (GPS, GLONASS) and based augmentation systems SBAS (WAAS, EGNOS, MSAS, GAGAN). Two next global SNSs and one SBAS are under construction. This paper gives the reply to some questions: in which mode these systems are the most frequently used and why, which system is preferred in separate mode and individual region of the world, which kind of the receiver, one or more systems, are most popular. The comparison of SNSs applications, the capability of SNS receivers and supported constellations by theses receivers and additionally the detailed analysis of SNS receiver survey designed for each mode of transport are presented in this paper also.
PL
Obecnie (lipiec 2016) można wyróżnić cztery gałęzie transportu – drogowy, kolejowy, morski i lotniczy. W każdej z nich nieprzerwana znajomość bieżącej pozycji użytkownika jest jednym z najważniejszych czynników decydujących o bezpieczeństwie i ekonomii transportu. Informację o pozycji mogą zapewnić satelitarne systemy nawigacyjne SSN (GPS, GLONASS) i systemy wspomagające SBAS (WAAS, EGNOS, MSAS, GAGAN). Dwa kolejne globalne SSN i jeden SBAS są w trakcie budowy. W artykule udzielono odpowiedzi na kilka pytań: w jakiej gałęzi transportu w/w systemy są najczęściej stosowane i dlaczego oraz który system jest preferowany w poszczególnych gałęziach i rejonach świata. Dla każdej z czterech gałęzi porównano także zastosowania GNSS, możliwości odbiorników GNSS i wykorzystywanie przez nich satelitów różnych systemów, a dodatkowo przedstawiono wyniki analizy porównawczej odbiorników GNSS przeznaczonych dla poszczególnych gałęzi transportu.
EN
Since few years the significance of the navigation at high latitudes (60° and more), increases incessantly, e.g. northern passages between Atlantic and Pacific Waters. In these regions the user’s position can be obtained mainly from global satellite navigation systems (SNS). Nowadays (September 2016) two systems, American GPS and Russian GLONASS, are fully operational, two next, Galileo in Europe and BeiDou in China, are under construction. As the error of user’s position obtained from these systems depends on geometry factor DOP (Dilution Of Precision) among other things the knowledge of the number of satellites visible by this user above given masking elevation angle Hmin and the distributions of DOP coefficient values, GDOP in particular, is very important. The lowest and the greatest number of satellites visible in open area by the user at high latitudes for different Hmin, the percentage of satellites visible above angle H, distributions of satellites azimuths and GDOP coefficient values for different Hmin for all these four SNSs at different user’s latitudes (beginning from 60°) and other distributions are presented in the paper. All calculations were made for constellation of BeiDou 27 MEO satellites, Galileo 24 satellites, GLONASS 24 and GPS 31 satellites.
PL
Od kilku lat znaczenie nawigacji na dużych szerokościach geograficznych (60° i wyższych) wzrasta nieprzerwanie, np. przejście północne łączące Atlantyk i Ocean Spokojny. W tych rejonach współrzędne użytkownika mogą zostać określone głównie za pomocą globalnych nawigacyjnych systemów satelitarnych (NSS). Obecnie (sierpień 2016) w pełni operacyjne są dwa systemy — amerykański GPS i rosyjski GLONASS, dwa kolejne są w budowie — Galileo w Europie i BeiDou w Chinach. Z uwagi na to, że błąd pozycji użytkownika określonej za pomocą tych systemów zależy również od współczynnika geometrycznego DOP, bardzo istotna jest znajomość liczby satelitów widocznych przez użytkownika powyżej przyjętej wysokości Hmin oraz rozkładu współczynnika DOP, w szczególności GDOP. W artykule omówiono najmniejszą i największą liczbę satelitów widocznych powyżej danej Hmin, procent satelitów widocznych powyżej danej H, procentowy rozkład azymutów satelitów oraz współczynnika GDOP na różnych szerokościach dla wszystkich czterech globalnych NSS. Obliczenia zostały zrealizowane przy założeniu, że system BeiDou liczy 27 satelitów, system Galileo 24 satelity, GLONASS 24 satelity, GPS zaś 31 satelitów.
EN
To date, a ship’s position can generally be obtained from functional satellite navigation systems (SNS), such as Global Position Systems (GPS and GLONASS), and Satellite-Based Augmentation Systems (SBAS), such as (European Geostationary Navigation Overlay Service (EGNOS), GPS-Aided Geo Augmented Navigation system (GAGAN), MTSAT Satellite Augmentation System (MSAS) and Wide Area Augmentation System (WAAS). Sometimes these systems are collectively called Global Navigation Satellite Systems (GNSS). Two more SNS, Galileo and BeiDou, one more SBAS, System for Differential Corrections and Monitoring (SDCM), and new regional systems, such as Quasi-Zenith Satellite System (QZSS) in Japan and Indian Regional Navigation Satellite System (IRNSS) in India, are also under construction. Information about all of these 11 systems is available on the internet. The number of links and the type of the information obtained from two search engines, Google and Bing, for the different keywords concerning each system are shown in the paper. Additionally, the analysis of the character and usefulness of the information placed on the pages of governmental organizations and institutions administering the above-mentioned systems, manufacturers of the satellites, receivers and different kinds of the institutional users is also provided.
PL
Opisano szczegóły częściowej integralności systemu GPS, problem integralności systemów GLONASS i SDCM, proponowane rozwiązania tego problemu w nowo budowanych systemach Galileo i BeiDou oraz nowe techniki, takie jak ARAIM czy też integralności mulitsystemowej.
EN
The details of the partial integrity of GPS system, the integrity problem of GLONASS and SDCM systems, the proposition of the solution of the integrity problem in the systems under construction Galileo and BeiDou, new technologies as ARAIM or multisystem integrity are described in this paper.
PL
Elektrownia Tilbury w nowym wyposażeniu, po remoncie związanym z pożarem z 2012 r., pracowała tylko do października 2013 r. Jej zamknięcie związane było z wygaśnięciem licencji. Przez ten czas przetestowano jednak zastosowane nowe rozwiązania przeciwpożarowe i potwierdzono, iż prawidłowo spełniają one swoją rolę.
14
Content available remote Translative packing of unit squares into equilateral triangles
EN
Every collection of n (arbitrary-oriented) unit squares can be packed translatively into any equilateral triangle of side length 2.3755 ∙ √n.
15
Content available remote Visibility and geometry of global satellite navigation systems constellations
EN
Nowadays (November 2015) there are two global fully operational satellite navigation systems, American GPS and Russian GLONASS. Two next are under construction, Galileo in Europe and BeiDou in China. As the error of observer’s position obtained from these systems depends on geometry factor DOP (Dilution Of Precision) among other things the knowledge of the number of satellites visible by this observer above given masking elevation angle Hmin and the distributions of DOP coefficient values, GDOP in particular, is very important. The lowest and the greatest number of satellites visible in open area by the observer at different latitudes for different Hmin, the percentage of satellites visible above angle H (9 intervals, each 10O wide), distributions (in per cent) of satellites azimuths (8 intervals, each 45O wide) and GDOP coefficient values (8 intervals) for Hmin = 5O for all these four systems at different observer’s latitudes (9 intervals, each wide 10O wide) are presented in the paper. Additionally the lowest elevation for which the number of satellites visible at different latitudes by the observer in open area above this angle is equal 4 or 3 and the distributions (in per cent) of GDOP coefficient values for different Hmin at observer’s latitudes 50-60O for the same four systems are showed. All calculations were made for constellation of GPS 27 satellites, GLONASS 24, Galileo 30 and BeiDou 27 MEO satellites.
EN
Currently (July 2014) an uninterrupted information about the ship’s position can be obtained from specialized electronic position-fixing systems, in particular, Satellite Navigation Systems (SNSs) as GSP and GLONASS and Satellite Based Augmentation Systems (SBASs) as EGNOS or WAAS. On each ship’s bridge one GPS stationary receiver is installed at least but on many ships there are two or even more GPS receivers. Nowadays, several hundred different end-user products and broad/chipset/modules are available on the world market, however for ship’s bridge several dozen models provided by a dozen or so manufacturers are designed only. In this paper 309 GPS receivers, 47 different models of 12 manufacturers installed on 188 ships of different types and with different lengths were taken into account. The relations between the type and the length of the ship, the number of the GPS receivers installed on one ship, the manufacturers and the models the most frequently used are presented.
EN
Nowadays on the ship’s bridge two or even more GPS receivers are installed. As in the major cases the coordinates of the position obtained from these receivers differ the following questions can be posed – what is the cause of this divergence, which receiver in the first must be taken into account etc. Based on information published in annual GPS and GNSS receiver survey it was estimated the percentage of GPS receivers designed for marine and/or navigation users. The measurements of GPS position based on the four different stationary GPS receivers were realized in the laboratory of Gdynia Maritime University in Poland in the summer 2012. The coordinates of the position of all these receivers were registered at the same time. The measurements in mode 3D were made for different input data, the same for all receivers. The distances between the individual unit’s antenna were considered also. Next measurements in mode 3D also were realized on two ships in different European ports. Additional measurements were made in mode 2D with three receivers for different their’s antenna heights. The results showed that the GPS position accuracy depends on the type of the receiver and its technical parameters particularly.
PL
Opisano szczegóły modernizacji dwóch nawigacyjnych systemów satelitarnych (NSS), GPS i GLONASS, zmiany w ich segmencie kosmicznym i naziemnym, dwa NSS, Galileo i BeiDou, znajdujące się w budowie, dwa nowe satelitarne systemy wspomagające (SBAS), SDCM i GAGAN. Omówiono problem kompatybilności i międzyoperacyjności wszystkich tych systemów, w szczególności trzech parametrów - sygnałów emitowanych przez satelity, czasów systemów i układów odniesienia współrzędnych. Przedstawiono również perspektywy stworzenia w przyszłości globalnego nawigacyjnego systemu satelitarnego GNSS.
EN
The details about two Satellite Navigation Systems (SNS), GPS and GLONASS modernization progressing, the changes in their spatial and terrestrial segments, two new global SNS, Galileo and BeiDou under construction, two new Satellite Based Augmentation Systems (SBAS), SDCM and GAGAN, the problem of compatibility and interoperability of all these systems, in particular three parameters - signal in space, system time and coordinate reference frame, and finally the perspectives of future Global Navigation Satellite System (GNSS) are described in this paper.
PL
Omówiono transmisję danych, różnego rodzaju poprawek, nieobrobionych pomiarów dotyczących określania pozycji użytkownika, do i z odbiornika nawigacyjnego systemu satelitarnego (NSS). Analizie poddano liczbę portów, rodzaj portów (standardów) oraz szybkości transmisji danych kilkuset odbiorników NSS dla szeroko rozumianej nawigacji.
EN
The paper concerns the transmission of data and different corrections, raw measurements of position solutions from or to the satellite navigation system (SNS) receiver The number of ports, port type and baud rate of several hundred SNS receivers for navigation environment and applications were analysed.
PL
Od 2000 roku budowany jest chiński nawigacyjny system satelitarny BeiDou (poprzednia nazwa Compass). Obecnie system ten, liczący 14 satelitów, jest uznawany za system regionalny, gdyż w grudniu 2011 roku oficjalnie uruchomiono jego usługi nawigacyjne polegające na określaniu pozycji i dostarczaniu informacji czasowej, ale tylko w obrębie Chin i rejonów sąsiednich. Usługi o zasięgu globalnym będą dostępne w 2017 roku. System BeiDou jest jedynym systemem nawigacyjnym, w którym segment kosmiczny obejmuje satelity na trzech rodzajach orbit - kołowej, geostacjonarnej i geosynchronicznej. Omówiono rozwój tego systemu, jego obecną i przyszłą konfigurację satelitarną, depesze nawigacyjne D1 i D2, pierwsze odbiorniki BeiDou oraz jego pozycję na świecie, zwłaszcza w sferze światowego transportu morskiego.
EN
Since 2000 year the China's satellite navigation system BeiDou, earlier named Compass, is under construction. Currently, August 2014, this system with 14 satellites is recognized as regional, because in December 2011 the Initial Operation Service was officially declared providing passive positioning navigation and timing services, but for China service area only. Global navigation services with 35 satellites will be provided by 2017, similarly to the GPS, GLONASS or Galileo systems. The BeiDou constellation has a unique composition among the world's global systems with its use of MEO, GEO l ISGO spacecrafts. The development of the system, its current and future satellite constellation, navigation messages D1 and D2, the first BeiDou receivers and its position in the world, world maritime transport in particular, are described in this paper.
first rewind previous Strona / 5 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.