Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A technical approach based on microbial technology is proposed to help resolve the problems caused by explosive gases in coal mines. The proposed technique uses methanotrophic bacteria to oxidize methane. In laboratory experiments, the oxidation effect of hanging nets impregnated with liquid containing methanotrophic bacteria was investigated at different air flow-rates. The experimental results showed that the volume of gas degraded and the gradient of degradation both increased as the gas concentration increased at constant air flow-rates. At fixed gas concentrations, the volume of degraded gas increased with increasing flow-rates of air at low flow-rates. However, the volume of degraded gas slightly decreased with increasing flow-rates of air at high flow-rates. These experimental results provide a theoretical basis for the treatment of explosive gases during exploration for natural gas and to treat potentially dangerous concentrations of gas in gobs, caves and upper corners of mineshafts. They will also be of great practical significance in coal mining.
EN
Amorphous alloys or metallic glasses have attracted significant interest in the materials science and engineering communities due to their unique physical, mechanical, and chemical properties. The viscous flow of amorphous alloys exhibiting high strain rate sensitivity and homogeneous deformation is considered to be an important characteristic in thermoplastic forming processes performed within the supercooled liquid region because it allows superplastic-like deformation behavior. Here, the correlation between the superheated liquid fragility, and the onset temperature of crystallization for Al-based alloys, is investigated. The activation energy for viscous flow of the liquid is also investigated. There is a negative correlation between the parameter of superheated liquid fragility and the onset temperature of crystallization in the same Al-based alloy system. The activation energy decreases as the onset temperature of crystallization increases. This indicates that the stability of a superheated liquid can affect the thermal stability of the amorphous alloy. It also means that a liquid with a large superheated liquid fragility, when rapidly solidified, forms an amorphous alloy with a low thermal stability.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.