Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper elucidated the potential of electron backscatter diffraction analysis for ground granulated blast furnace slag geopolymers at 1000°C heating temperature. The specimen was prepared through the mechanical ground with sandpaper and diamond pad before polished with diamond suspension. By using advanced technique electron backscatter diffraction, the microstructure analysis and elemental distribution were mapped. The details on the crystalline minerals, including gehlenite, mayenite, tobermorite and calcite were easily traced. Moreover, the experimental Kikuchi diffraction patterns were utilized to generate a self-consistent reference for the electron backscatter diffraction pattern matching. From the electron backscatter diffraction, the locally varying crystal orientation in slag geopolymers sample of monoclinic crystal observed in hedenbergite, orthorhombic crystal in tobermorite and hexagonal crystal in calcite at 1000°C heating temperature.
EN
Dolomite can be used as a source of aluminosilicate to produce geopolymers; however, this approach is limited by its low reactivity. This study analyzes the viability of producing geopolymers using dolomite/fly-ash with sodium silicate and NaOH solutions (at multiple concentrations) by determining the resultant geopolymers’ compressive strengths. The dolomite/fly-ash-based geopolymers at a NaOH concentration of ~22 M resulted in an optimum compressive strength of 46.38 MPa after being cured for 28 days, and the SEM and FTIR analyses confirmed the denser surface of the geopolymer matrix. The synchrotron micro-XRF analyses confirmed that the Ca concentration exceeded that of Si and Mg, leading to the formation of calcium silicate hydrate, which strengthens the resulting geopolymers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.