The paper is a continuation of the publication under the title “Acoustic diagnostics applications in the study of technical condition of combustion engine” and concerns the detailed description of decision support system for identifying technical condition (type of failure) of specified combustion engine. The input data were measured sound pressure levels of specific faults in comparison to the noise generated by undamaged motor. In the article, the whole procedure of decision method based on game graphs is described, as well as the interface of the program for direct usage.
The paper presents the possible applications of using acoustic diagnostics in inspecting the technical condition of an internal combustion engine with autoignition on the example of the Fiat drive unit with common rail system. As a result of measuring the sound pressure level for specific faults and comparing the noise generated by the motor running smoothly, the detailed maps of changes in the acoustic spectrum are possible to generate. These results may be helpful in the future diagnostics of internal combustion engines. In the paper, the results of scientific work in the area of research, design and operation of internal combustion engines, conducted at the Department of Automotive Engineering, in cooperation with the Laboratory of Hydraulic Drives & Vibroacoustics of Machines at the Wroclaw University of Technology are included.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This article presents a description of the equipment and the didactic and scientific research capabilities of the Laboratory of Hydraulic Drives & Vibroacoustics of Machines located at the Faculty of Mechanical Engineering of Wrocław University of Technology. In the article, the main areas of the laboratory activity are indicated as well as didactic offer including presentation of currently available test rigs.
PL
W artykule przedstawiono opis wyposażenia i możliwości dydaktyczne oraz naukowo-badawcze Laboratorium Napędów Hydraulicznych i Wibroakustyki Maszyn Wydziału Mechanicznego Politechniki Wrocławskiej. W artykule wskazano obszary działań Laboratorium, przedstawiono ofertę dydaktyczną, a także opisano stanowiska dydaktyczne i pomiarowe.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, results of the static mechanical analysis of a gear micropump body are presented. Numerical simulations using finite element method (FEM) were conducted using Ansys Multiphysics software. After analysis of stress and displacement distribution in the pump body, a mass optimization of construction was provided. In the optimized body, maximal value of stress reached 134 MPa. Safety factor was equal to 2.9. The highest value of displacement in the optimized body was about 0.02 mm. Maximal values of stress and displacement provide appropriate work of the micropump. Strength and stiffness criteria in the optimized pump body were achieved. For the construction of the pump body before and after optimization, energetic efficiency ratios (kef) were calculated. Optimized micropump body has more than 30% increase in kef ratio to the pump with the primary body.
W pracy przedstawiono współczesne metody analizy pulsacji ciśnienia oraz drgań w sieci przemysłowej do przesyłu gazu. Zjawisko pulsacji ciśnienia gazu jest niekorzystne ze względu na zwiększenie kosztów procesu sprężania oraz generowanie hałasu. Ponadto pulsacja wywołuje drgania mechaniczne konstrukcji, co może skutkować uszkodzeniem lub zniszczeniem elementów instalacji. W celu zapobieżenia niekontrolowanej pulsacji ciśnienia gazu niezbędne jest projektowanie sieci przemysłowych zgodnie z określonymi wytycznymi. Niestety aktualne normy nie uwzględniają obligatoryjnych obliczeń pulsacji ciśnienia i drgań, w związku z czym podjęto prace rozwojowo-badawcze nad opracowaniem metodyki obliczeń, pozwalające na prawidłową ocenę wytężenia konstrukcji w warunkach rzeczywistych.
EN
The paper presents the modern methods of pressure pulsation and vibration analysis in industrial networks for natural gas transportation. Gas pressure pulsation phenomena is disadvantageous due to the cost increase of the compression process and the generation of noise. Furthermore, pulsation causes mechanical vibration of the construction, which can result in damage or destruction of installation components. In order to prevent uncontrolled gas pressure pulsation, it is necessary to design industrial networks in accordance with specified guidelines. Unfortunately, current standards do not take into account the mandatory calculations of pressure pulsation and vibration, therefore the scientific research was undertaken to develop the calculation methodology allowing for a proper assessment of the construction effort in the real operation conditions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.