Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The purpose of this work is to create a Matlab toolbox that makes it easy and accessible to get acquainted with a novel control method called type-2 fuzzy controller. A toolbox for working with type-1 controllers can be found in the Simulink package, while there is only few, simple toolboxes for type-2 fuzzy controllers. The article describes the details of the created software, which allows you to work both with simulation objects, but also enables you to create program code for an PLC industrial controller. This gives you the opportunity to work in a simulation environment with a model of the control object and then, after tuning the controller, to automatically implement the controller to control the real object. In the literature, you can find many methods for reducing type-2 to type-1 fuzzy logic, but most often they are compared to several well-known classical reduction methods, such as the KM algorithm. There is no compilation of the most popular methods and a comparison of their performance. With the new toolbox it was possible to quickly create and add new reduction methods so in the article an analysis of 16 reduction methods is also presented.
2
Content available Fast, non-destructive measurement of roof-bolt loads
EN
This paper discusses the pull-out laboratory tests and the monitoring of expansion-shell bolts with a length of 1.82 m. The bolts comprised the KE-3W expansion shell, a rod with a diameter of 0.0183 m and a profiled, circular plate with a diameter of 0.14 m, and a gauge of 0.006 m. The bolts were installed in a concrete block with a compressive strength of 75 MPa. The tests were conducted on a state-of-the-art test stand owned by the Department of Underground Mining of the AGH University of Science and Technology. The test stand can be used to test roof bolts on a geometric scale of 1:1 under static and rapidly varying loads. Also, the stand is suitable for testing rods measuring 5.5 m in length. The stand has a special feature of providing the ongoing monitoring of bolt load, displacement and deformation. The primary aim of the study was to compare the results recorded by two different measurement systems with the innovative Self-Excited Acoustic System (SAS) for measuring stress variations in roof bolts. In order to use the SAS, a special handle equipped with an accelerometer and exciter mounted to the nut or the upset end of the rod was designed at the Faculties of Mining and Geoengineering and Mechanical Engineering and Robotics of the AGH University of Science and Technology. The SAS can be used for non-destructive evaluation of performance of bolts around mining workings and in tunnels. Through laboratory calibration tests, roof bolt loads can be assessed using the in-situ non-destructive method.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.