Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In mining, where production is affected by several factors, including equipment availability, it is necessary to develop reliable models to accurately predict mine production to improve operational efficiency. Hence, in this study, four (4) machine learning algorithms - namely: artificial neural network (ANN), random forest (RF), gradient boosting regression (GBR) and decision tree (DT)) - were implemented to predict mine production. Multiple Linear Regression (MLR) analysis was used as a baseline study for comparison purposes. In that regard, one hundred and twenty-six (126) datasets from an open-pit gold mine were used. The developed models were evaluated and compared using the correlation coefficient (R2), mean absolute percentage error (MAPE) and variance accounted for (VAF). It has been shown in this study that the ANN model can best estimate open-pit mine production by comparing its performance to that of the other machine learning models. The R2, MAPE, RMSE and VAF of the models were 0.8003, 0.7486, 0.7519, 0.6538, 0.6044, 4.23%, 5.07%, 5.44%, 6.31%, 6.15% and 79.66%, 74.69%, 74.10%, 65.16% and 60.11% for ANN, RF, GBR, DT and MLR, respectively. Overall, this study has shown that machine learning algorithms predict mine production with higher accuracy.
EN
Although a major portion of the emitted energy from mine blast is sub-audible (lower frequency), there exist a component that is audible (high frequencies from 20 Hz to 20 KHz) and as such within the range of human hearing as noise. Unlike blast air overpressure (low frequency occurrence), noise prediction from mine blasting has received little scholarly attention in mining sciences. Noise from mine blast is considered a major detrimental blasting effect and can be a menace to nearby residents and workers in the mine. In this paper, a blast-induced noise level prediction model based on Brain Inspired Emotional Neural Network (BENN) is presented. The objective of this paper was to investigate the implementation possibility of the proposed BENN approach along with six other artificial intelligent methods, such as Backpropagation Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN), Generalised Regression Neural Network (GRNN), Group Method of Data Handling (GMDH), Least Squares Support Vector Machine (LSSVM) and Support Vector Machine (SVM). The study also implemented the standard Multiple Linear Regression (MLR) for comparison purposes. The statistical analysis carried out revealed that the BENN performed better than the other investigated methods. Thus, the BENN achieved very promising testing results of 1.619 dB, 3.076%, 0.0925%, 0.911 and 82.956% for root mean squared error (RMSE), mean absolute percentage error (MAPE), normalised root mean squared error (NRMSE), correlation coefficient (R) and variance accounted for (VAF). The implemented BENN can be useful in managing noise from mine blasting using site specific data.
EN
The safety of workers, the environment and the communities surrounding a mine are primary concerns for the mining industry. Therefore, implementing a blast-induced ground vibration monitoring system to monitor the vibrations emitted due to blasting operations is a logical approach that addresses these concerns. Empirical and soft computing models have been proposed to estimate blast-induced ground vibrations. This paper tests the efficiency of the Wavelet Neural Network (WNN). The motive is to ascertain whether the WNN can be used as an alternative to other widely used techniques. For the purpose of comparison, four empirical techniques (the Indian Standard, the United State Bureau of Mines, Ambrasey-Hendron, and Langefors and Kilhstrom) and four standard artificial neural networks of backpropagation (BPNN), radial basis (RBFNN), generalised regression (GRNN) and the group method of data handling (GMDH) were employed. According to the results obtained from the testing dataset, the WNN with a single hidden layer and three wavelons produced highly satisfactory and comparable results to the benchmark methods of BPNN and RBFNN. This was revealed in the statistical results where the tested WNN had minor deviations of approximately 0.0024 mm/s, 0.0035 mm/s, 0.0043 mm/s, 0.0099 and 0.0168 from the best performing model of BPNN when statistical indicators of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Root Mean Square Error (RRMSE), Correlation Coefficient (R) and Coefficient of determination (R2) were considered.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.