A moving average (MA) is a commonly used noise reduction method in signal processing. Several studies on wheeze auscultation have used MA analysis for preprocessing. The present study compared the performance of MA analysis with that of differential operation (DO) by observing the produced spectrograms. These signal preprocessing methods are not only applicable to wheeze signals but also to signals produced by systems such as machines, cars, and flows. Accordingly, this comparison is relevant in various fields. The results revealed that DO increased the signal power intensity of episodes in the spectrograms by more than 10 dB in terms of the signal-to-noise ratio (SNR). A mathematical analysis of relevant equations demonstrated that DO could identify high-frequency episodes in an input signal. Compared with a two-dimensional Laplacian operation, the DO method is easier to implement and could be used in other studies on acoustic signal processing. DO achieved high performance not only in denoising but also in enhancing wheeze signal features. The spectrograms revealed episodes at the fourth or even fifth harmonics; thus, DO can identify high-frequency episodes. In conclusion, MA reduces noise and DO enhances episodes in the high-frequency range; combining these methods enables efficient signal preprocessing for spectrograms.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.