Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper discusses emissions from plug-in hybrid vehicles under various driving scenarios and reports experimental data obtained under laboratory and real-world conditions. Two European plug-in hybrid passenger cars were tested using the two test types in use in the EU (chassis dynamometer and on-road), with some modifications. The best-case and near-worst-case battery states of charge were used for testing. Behavior in terms of CO2 emissions, regulated emissions, and unregulated emissions was characterized and analyzed. Differences were generally much greater for on-road testing, especially for urban driving, during which the potential for purely electrical propulsion of the vehicle is greatest. The long distances covered by current EU legislative test procedures limit the impacts of some effects. Regardless of the traction battery’s state of charge, regulated emissions were well below the applicable EU limits under all driving conditions - for example, combined emissions of reactive nitrogen compounds (nitrogen oxides, ammonia, and nitrous oxide) were consistently < 10 mg/km when tested under laboratory conditions. The two vehicles tested showed that the state of the battery had a large impact on the proportion of electrical propulsion and the resulting CO2 emissions, but differences in regulated pollutants decrease with increasing distance and are generally relatively limited for longer journeys, which include non-urban driving.
EN
Exhaust emissions testing of vehicles under real driving conditions (real driving emissions, RDE) using portable exhaust emissions measurement systems (PEMS) was introduced a few years ago by the European Commission as a mandatory test during type approval and later also for in-service conformity. This paper compares results from mobile systems for measuring exhaust gas emissions (PEMS) with a stationary laboratory (BOSMAL’s Exhaust Emissions Testing Laboratory). The tests were carried out using a passenger car equipped with a spark ignition engine, which was tested on a chassis dynamometer over the WLTC cycle. The results showed that the differences between PEMS analysers and stationary analysers range from a few percent to a dozen or so percent, depending on the component and the measurement method.
EN
Both the light- and heavy-duty sectors of the automotive industry are currently under unprecedented pressure from a wide range of factors, particularly in terms of environmental performance and fuel consumption. Test procedures have undergone massive changes and continue to evolve, meaning that standards are becoming much harder to meet, especially in Europe but also in other continents. Such developments force changes in testing methodology, the development of powertrains themselves and their aftertreatment systems and strategies and calibrations. This paper reports and summarises the topics of the PTNSS Congress and attempts a synthesis on the current status of the field of LD ad HD IC engines, hybrid powertrains and electric vehicles, engine fuel and oil and what the coming years may hold for the automotive and fuel industries and other allied fields.
EN
This paper reviews the emissions of reactive nitrogen compounds (RNCs) from modern vehicles fitted with spark ignition engines and three-way catalysts. Specific aspects of the pollutants involved - and their formation - are discussed. Cold start driving cycles are scenarios under which emissions of all four RNCs can be significant; the mechanisms behind emissions trends are explored. Experimental data obtained from two vehicles tested over two different cold start driving cycles are presented and analysed. The use of gravimetric and molar metrics are explored. Ammonia, a species which is currently not regulated for passenger cars in any automotive market, is identified as forming the majority of the RNC emissions over the entire driving cycle. While ammonia emissions are strongly linked to aftertreatment system warmup and periods of high load, significant ammonia emissions were also measured under certain hot-running, low load conditions, and even at idle. For the majority of the duration of the test procedures employed, the RNC profile was dominated by ammonia, which accounted for between 69% and 86% of measured RNCs in the exhaust gas. Emissions are compared to the available legislative precedents (i.e. emissions limits currently in force in various jurisdictions). Finally, possibilities for control of exhaust emissions of currently unregulated RNCs are briefly discussed.
EN
The latest legislation regarding the reduction of harmful exhaust emissions, greenhouse gases and fuel consumption determines not only maximum permissible emissions factors, but also emissions testing methods and laboratory design and additionally leads to the development of new research methods. BOSMAL has risen to meet these challenges by investing in an updated, state-of-the-art emissions testing laboratory, housed within a climate chamber and in parallel investing in a completely new laboratory designed with incoming and future legislative requirements in mind. This paper presents BOSMAL’s improved M1/N1 vehicular emissions and fuel consumption laboratory in a climatic chamber and BOSMAL’s standard chamber for the testing of vehicles in accordance with European Union, US and Japanese standards. The specifications, capabilities and design features of the sampling, analysis and development research possibilities and climate simulation systems are presented and discussed in relation to the increasing drive for cleaner, light duty road vehicles (including hybrids and electric vehicles). The recently-renovated laboratory with extended standard temperature range and the laboratory with climatic chamber are described in the context of the newest European Union legislation on the emission in the range of Euro 6d testing requirements. The laboratories permit BOSMAL’s engineers to compete in the international automotive arena in the development of new, more ecologically friendly and increasingly fuel efficient vehicles.
EN
This paper discusses the fact that vehicle and powertrain test methods have long been guided by type approval requirements - with a focus ot the recent/current example of real driving emissions (RDE) and in-service conformity (ISC) test requirements. The implications - current and future - of these testing requirement, which force the use of portable emissions measurement system (PEMS) are discussed. In this context, BOSMAL Automotive Research and Development Institute’s PEMS systems are presented, and the systems’ attributes and versatility are explored. Considerations for testing a very wide range of vehicle, engine and fuel types are mentioned. Non-legislative applications of PEMS systems are briefly explored; finally, it is shown that the emissions laboratory and its chassis dyno remain indispensable when conducting work on light duty exhaust emissions, even in the era of RDE.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.