Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Trends in improving the structure of a rotary dryer
EN
The article presents rational principles for improving the structure of a flax heap drier. As a result of tests which were carried out, we established that the counter-flow rotary dryer SKM-1 is the most perspective for drying flax heap. For effective drying of the flax heap fine fraction the second rotating screen above the loaded layer of flax heap is suggested in the SKM-1 dryer. Consequently, the drying agent processed on the bottom screen is used for preliminary drying and removal of surface moisture of the material loaded on the top screen. For the purpose of maintaining the uniform drying of the material it is recommended to carry out loosening and hashing during the drying process with the help of the loosening device, established as the Vshaped device on the discharge unit on the way to a mill. The preliminary heating of the flax heap on the top screen essentially accelerates drying and allows the increase of the dryer performance and can minimize energy requirement for drying. The correctly selected modes of the drying process provide favorable conditions for ripening flax seed, avoid damage of drying material and improve its sowing quality.
PL
W artykule zamieszczono racjonalne zasady doskonalenia konstrukcji suszarni do suszenia lnianej masy omłotowej. W rezultacie przeprowadzonych badań ustalono, że najbardziej perspektywiczną, z punktu widzenia suszenia lnianej masy omłotowej, jest suszarnia karuzelowa SKM-1. Celem poprawy efektywności suszenia drobnej frakcji lnianej masy omłotowej proponuje się w suszarni SKM-1 montaż drugiego obrotowego kosza sitowego nad dotychczasowym (powyżej zasypywanej warstwy masy lnianej). W rezultacie czego przepracowany na dolnym sicie czynnik suszący wykorzystywany jest do wstępnego podgrzewania i usuwania wilgoci powierzchniowej, zasypywanego na górny kosz sitowy materiału. W celu zapewnienia równomiernego suszenia materiału zaleca się jego spulchnianie i mieszanie w procesie suszenia za pomocą spulchniacza wyrównywacza, ustawionego w postaci klinowej osłony na elemencie wyładowczym. Wstępne podgrzewanie lnianej masy omłotowej na górnym koszu sitowym istotnie przyspiesza jej dosuszanie, pozwala zwiększyć wydajność suszenia i ograniczyć nakłady energetyczne na dosuszanie. Prawidłowo dobrane parametry suszenia zapewniają dobre warunki dosuszania nasion lnu, ograniczając ich uszkadzanie, zwiększając ich właściwości siewne.
PL
Len jest uprawiany na włókno i na nasiona. W obu przypadkach jest surowcem wielu produktów użytku powszechnego, jak również lekarskiego. Głównymi producentami lnu są: Chiny, Francja, Rosja i Białoruś. W Polsce len jest uprawiany na małym areale z zastosowaniem maszyn importowanych. Celem badań było doskonalenie konstrukcji separatora lnianej masy omłotowej (targanu) oraz ustalenie zależności między jego podstawowymi parametrami konstrukcyjnymi i eksploatacyjnymi oraz właściwościami obrabianego materiału a skutecznością separacji i zapotrzebowaniem na moc urządzenia. Separowana masa omłotowa pochodziła z kombajnu lnianego ŁK-4A, a podstawowymi zespołami maszyny separującej były: 2 pary bębnów zębowych, 2 pary bębnów listwowych, bębny domłacające (wycierające). W badaniach laboratoryjnych ustalono wpływ wilgotności targanu na stopień oddzielenia frakcji grubej od nasion i torebek nasiennych. W badaniach eksploatacyjnych ustalono wpływ odległości między bębnami, wilgotności targanu i przepustowości separatora na stopień oddzielenia grubych domieszek oraz zapotrzebowanie na moc napędu urządzenia. Wilgotność bezwzględna targanu wynosiła 35–60%, torebek nasiennych – 40–50%, nasion luzem – 15–27%, nasion chwastów – 45–80%, frakcji włóknistej – 25–65%. Zakres zmienności parametrów eksploatacyjnych separatora wynosił: rozstaw bębnów – 120–145 mm, wilgotność targanu 10–35%, przepustowość 0,2–0,45 kg·s-1. Dokładność separacji wynosiła, w zależności od: rozstawu bębnów – 96,8–80,7%, wilgotności targanu – 98,1–80,7%, przepustowości separatora – 97,5–67,7%. Z badań wynika, że wilgotność targanu, zapewniająca dobre oddzielenie części słomiastej, nie powinna przekraczać 20% (podczas separacji targanu o wilgotności większej niż 20% zwiększają się straty nasion i maleje ilość oddzielonej części słomiastej), a optymalna przepustowość separatora wynosi 0,25 kg·s-1.
EN
Flax is grown for fiber and seed. In both cases it is the raw material used for a lot of products of gen-eral use and for medical purpose as well. The main producers of flax are: China, France, Russia and Belarus. In Poland flax is grown on a small area of land and its production technology is based on imported machinery. The aim of the study was to improve the construction of flax threshed mass sepa-rator (targan) and finding the relationship between the basic design and operating parameters of the separator, and the properties of the material, as well. The separated threshed mass was from flax combine harvester type ŁK-4A. The basic operating units of the separator included: two pairs of peg-tooth drums, 2 pairs of bar drums and threshing drums. Laboratory tests defined the influence of the threshed mass (oakum) humidity on the degree of separation of the coarse fraction from seed and boll of flax. The operating tests determined the impact of the distance between the drums, humidity and separator throughput on the degree of separation of coarse impurities and on power requirements of the driving unit. Absolute humidity of the threshed mass ranged from 35 to 60%. In contrast, the hu-midity of the individual components were: bolls – 40–50%, bulk seed – 15–27% weed seeds – 45–80% fiber fraction – 25–65%. The range of variation of operating parameters was as follows: 120–145 mm – spacing drums, 10–35% – humidity of threshed mass, and 0.2–0.45 kg·s-1 – the separator throughput. Research results indicate that: fibrous fraction in the threshed mass providing proper sep-aration should not exceed 16,7% – length of strawy part should not exceed 150 mm; humidity of the threshed mass providing proper separation of the strawy part should not exceed 20% because when separating the threshed mass of humidity above 20% the seed loose increases and the percent of strawy part separation decreases. The optimal throughput of the separator amounts to 0.25 kg·s-1.
PL
Na efektywność operacji technologicznych lnu uprawianego na nasiona ma wpływ wiele czynników, w tym właściwości fizyczno-mechaniczne lnianej masy omłotowej (targanu). Celem badań było wyznaczenie wartości wskaźników charakteryzujących właściwości fizyczno-mechaniczne lnianej masy omłotowej, składającej się z nasion luzem, torebek nasiennych, źdźbeł słomy lnianej i chwastów, otrzymanej podczas wstępnego omłotu lnu przeznaczonego na nasiona. Badania obejmowały pomiary wilgotności bezwzględnej składników lnianej masy omłotowej, jej gęstości i podatności na deformację, współczynników tarcia, właściwości aerodynamicznych, wytrzymałości torebek nasiennych, składu frakcyjnego po omłocie i zapotrzebowania na ciepło do suszenia. Wykonano także klasyfikację nasion i domieszek według długości, grubości i szerokości. Stwierdzono, że wilgotność bezwzględna lnianej masy omłotowej wynosiła od 35 do 50%, w tym: nasion luzem – 15–27%, torebek nasiennych – 18–58%, części słomiastych – 30–65%, chwastów – 45–80%. Gęstość wysuszonego targanu wynosiła ok. 140 kg·m-3. Średnie wartości współczynników tarcia masy omłotowej wynosiły: wewnętrznego – 1,69, statycznego – 0,83, dynamicznego – 0,50. Opory aerodynamiczne przepływu powietrza przez masę omłotową zależały od grubości jej warstwy i były do niej proporcjonalne. Masa wody odparowanej z 1 t targanu (stosunek masy źdźbeł lnu do chwastów λ = 2:1) wynosiła 300–470 kg, a nakłady cieplne na jego suszenie – odpowiednio 2 226 500–3 478 400 kJ·t-1. Niszczenie torebek nasiennych mniej dojrzałych było łatwiejsze niż dobrze dojrzałych. Skład lnianej masy po domłocie, przeznaczonej do czyszczenia, wynosił: torebki nasienne – 1,1–36,0%, nasiona luzem – 28–67,2%, nasiona chwastów – 5,7–11,7%, plewy i domieszki pyliste – 9,5–31%, resztki źdźbeł i domieszki mineralne – 1,9–6,2%.
EN
The efficiency of technological operations of flax growing for seed is affected by a lot of factors includ-ing the physical and mechanical properties of flax threshed mass (oakum). The aim of this study was to determine the values of the indicators characterizing the physical and mechanical properties of flax threshed mass (oakum) consisting of seed in bulk, boll of flaks, stalks of flax straw and weeds ob-tained during the prethreshing operation of flax grown for seed. The scope of the research included measurements of absolute humidity of flax threshed mass components consisting of: seed in bulk, boll of flax, fiber flax and weed admixtures as well as the threshed mass density and susceptibility to de-formation, flax boll friction coefficients, and the aerodynamic, thermal, and strength properties of the flax bolls, the fractional composition after threshing, and the lifting speed of the fluidization drying me-dium. There were also performed the classification of seed and admixtures according to their length, thickness and width. It was stated that the absolute humidity of the flax threshed mass ranged from 35 to 50% including: bulk seed – 15–27%, boll of flax – 18–58%, straw fraction – 30–65%, weed 45–80%. Oakum density amounted to about 140 kg·m-3. Average values of the threshed mass friction coefficients amounted to: the internal one – 1.69; static – 0.83; dynamic – 0.50. Aerodynamic re-sistance of the air flow through the threshed mass depended on the layer thickness and grew up pro-portionally. Thermal characteristics of threshed mass concerned: the mass of water evaporated from 1 t (ratio of flax stalks to weeds λ = 2:1) when compared to weed stalks of flax λ = 2:1), which amounted to 300–470 kg and thermal inputs that amounted to 2 226 500–3 478 400 kJ·t-1. Thermal characteris-tics of threshed mass concerned: the mass of water evaporated from 1 t (at the ratio of flax stalks to weed λ = 2:1), which amounted to 300–470 kg and heat inputs, which amounted to 2 226 500–3 478 400 kJ·t-1 respectively. Destruction of flax bolls less matured was easier than destruction of well ma-tured flax bolls. The composition of flax mass to be cleaned after complementary threshing was: 1.1–36.0% bolls, seeds bulk 28.0–67.2% 5.7–11.7% weed seeds, glums and dusty impurities 9.5–31.0%, stalks residues and mineral admixtures 1.9–6.2%.
4
Content available Flax seed separation with vibrating screens
EN
The objective of the research consisted in comparing the operation efficiency of a separator provided with fixed screens mounted to the shoe and the one fitted with spring-mounted screens, determination of the impact of the basic kinematics parameters on the separation efficiency. Analysis was also carried out regarding the use of cylindrical spring-mounted screens and flat spring-mounted screens. The process of mass movement on the screen surface was examined also including the movement upward, downward and throwing up. The values characteristic for the separation process were output (capacity) of screens and the impurity separation degree. The analyzed kinematic parameters included: screen shoe vibration amplitude, screen vibration amplitude, screen inclination angle, screen vibration operation angle, own vibration frequency, kinematics limits coefficient. As a result, the mathematical models of separation were determined regarding the unit efficiency and the impurity separation degree. Next calculation based on these equations determined the value of the following parameters: Ap=1, 2, A=8 mm, K=2, 3, for which qF=0.72 kg∙s-1∙m-2, E=0.87. The parameters of springs ensuring proper modulus may be determined with the monogram or formula (20). According to the conducted experiments qF screen capacity depended on the straight-line basis on Ap spring stiffness, A screen shoe vibration amplitude and it increased as qF and Ap values increased. The increase was less evident in case of ω and ε value increase. Whereas the non straight-line basis and significant increase followed as the values of α and K parameter increased. Impurity separation degree E increased initially and next decreased as increase followed of spring stiffness Ap, and along with screen hopper vibration amplitude increase. This increase was less evident in case of ω frequency and ε angle increase. Separation of impurities significantly decreased in case of α and K parameter increase.
PL
Celem badań było porównanie efektywności pracy czyszczalni z sitami mocowanymi w koszu sitowym na stałe z mocowanymi sprężyście, ustalenie wpływu podstawowych parametrów kinematycznych na wydajność procesu czyszczenia. Analizowano przypadki stosowania mocowania sit na sprężynach cylindrycznych i płaskich. Badano proces przemieszczania się materiału czyszczonego po powierzchni sit z włączaniem etapów ruchu do góry, do dołu, podrzucania. Wielkościami charakteryzującymi proces czyszczenia były wydajność (przepustowość) sit i stopień oddzielania domieszek. Analizowanymi parametrami kinematycznymi były: amplituda drgań kosza sitowego, amplituda drgań własnych sit, kąt pochylenia sit, kąt kierunkowy drgań sit, częstotliwość drgań własnych, wskaźnik reżimu kinematycznego. W rezultacie otrzymano matematyczne modele procesu separacji dla jednostkowej wydajności i stopnia oddzielania domieszek. Z równań tych obliczono najlepsze wartości parametrów: Ap=1,2, A=8 mm, K=2,3, dla których qF=0,72 kg∙s-1∙m-2, E=0,87. Parametry sprężyn, zapewniające wymagany współczynnik sprężystości, można określić za pomocą monogramu lub formuły matematycznej (20). Z przeprowadzonych eksperymentów wynika, że przepustowość sit qF zależy liniowo od sztywności sprężyn Ap, amplitudy drgań kosza sitowego A i rośnie wraz z wartościami qF i Ap. Mniej wyraźnie wzrasta również ze wzrostem wartości ω i ε. Natomiast nieliniowo i znacznie wzrasta ze wzrostem parametrów α i K. Stopień oddzielania domieszek E początkowo wzrasta a następnie maleje ze wzrostem sztywności sprężyn Ap, oraz ze wzrostem amplitudy drgań kosza sitowego. Mniej wyraźnie wzrasta ze wzrostem częstotliwości ω i kąta ε. Oddzielanie domieszek wyraźnie maleje ze wzrostem wartości parametrów α i K.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.