Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Machining strain hardening metals using nanostructured thin film end mills
EN
Purpose: This paper discusses improvements associated with the tool life of cutting tools used to machine alloy steels. To achieve this in an efficient manner, experiments on a variety of tool coatings are conducted on AISI M42 tool steel (58-63 HRC). Design/methodology/approach: In order to assess the impact of different tool coatings on machining process, initial experiments simulate current machining operations; this provides a benchmark standard for tool life and surface finish. Findings: The findings in the paper show that TiAlCrN and TiAlCrYN coated WC-Co cutting tools perform better than uncoated and TiN coated cutting tools. Research limitations/implications: The implications of the paper tend to indicate that dry machining of M42 tool steels can be optimized using coated cutting tools. The limitations of the paper include machining at specific cutting speeds and the employment of a short-time tool wear method. Practical implications: The practical implications of the paper show that dry machinig of hardened tool steels can be achieved under specific circumstances. Further research is needed to explain how the wear mechanism changes under various machining conditions. Originality/value: The paper presents original information on the characteristics of dry machining of tool steels under specific machining operations. The paper is of interest to manufacturing engineers.
2
Content available remote Machining M42 tool steel using nanostructured coated cutting tools
EN
Purpose: This paper discusses improvements associated with the life of cutting tools used to machine M42 tool steel. To achieve this in an efficient way, experiments on a variety of tool coatings are conducted on AISI M42 tool steel (58-63 HRC). Design/methodology/approach: In order to assess the impact of different tool coatings on the machining process, initial experiments simulate existing machining operations; this provides a standard for tool life and surface finish. Findings: The findings in the paper show that TiAlCrYN coated WC-Co cutting tools perform better than uncoated cutting tools. Research limitations/implications: The implications of the paper tend to indicate that machining M42 tool steels without lubricant can be optimized using coated cutting tools. The limitations of the paper include machining at one specific cutting speed and the employment of a short-time tool wear method. Practical implications: The practical implications of the paper show that dry machining of hardened tool steels can be achieved under certain circumstances. Further research is needed to explain how the wear mechanism changes with varying machining conditions. Originality/value: The paper presents original information on the characteristics of dry machining of M42 tool steel under specific machining operations. The paper is of interest to manufacturing engineers and materials scientists.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.