Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Przyszłość jest elektromobilna. To już nie mit a fakt, który znajduje odzwierciedlenie w liczbach. Rynek elektrycznych pojazdów w Polsce liczy ponad 50 tysięcy zarejestrowanych pojazdów – wynika z licznika elektromobilności. A to dopiero początek zmian, które zajdą na przestrzeni trzynastu lat.
EN
The article presents the situation regarding the hydrogenisation of motor transport in Northwestern Europe, a region leading in this regard in Europe. The following countries were included in the analysis of national plans in this area, taking into account both technical issues - among others - concerning HRS and FCEV, their number, as well as economic issues (among other things relating to the costs of using hydrogen): Belgium, Denmark, France, Germany, the Netherlands, Norway and England. Reference was also made to the situation in Poland, where major fuel and energy companies (among others: Orlen, Lotos, PGNiG and ZE PAK Capital Group) are strongly interested in hydrogenisation of motor transport and manufacturers of vehicles - for example - Solaris or Autosan in producing vehicles equipped with fuel cells. Based on the analyses carried out at the Institute of Motor Transport, it was found that the good location of basic hydrogen refuelling stations is along the TEN-T corridors running across Poland. The order of their location is as follows: 1 - Poznan, 2 - Warsaw,3 - Bialystok, 4 - Szczecin, 5 - Łódź region, 6 - Tricity, 7 - Wroclaw, 8 - Katowice region, 9 - Kraków.
EN
Pollution of the environment is a global phenomenon. The lack of specific actions to reduce environmental pollution can lead to an increase in the average temperature of the Earth's air and to global consequences. One of the important sectors affecting environmental pollution is transport, including road transport. Currently, intensive legislative and construction works are underway to reduce the emission of harmful substances from road transport. Meeting the requirements imposed by the European Union makes it necessary not only to make structural changes to combustion units or exhaust aftertreatment systems, but also to use additional systems supporting the operation of the main engine. This group includes, among others, Mild Hybrid propulsion systems and classic hybrid systems. Their application is to affect not only the possibility of reducing the swept volume of a combustion unit, while maintaining its operational parameters, but also to reduce the emission of harmful substances of exhaust gases. The conducted research and its analysis indicate the legitimacy of using a newer vehicle equipped with a modern propulsion system, i.e. Mild Hybrid, in real conditions. In the case of toxic emissions of exhaust gases, a difference in emissions of individual components is noticeable, depending on the chosen driving mode. However, it is worth mentioning the difference in the emission of nitrogen oxides and the number of particulate matters. Their emission is reduced in relation to a vehicle using a classic powertrain. The use of a modern propulsion system also improves reliability. The tested Mild Hybrid vehicle does not use a conventional alternator and starter. This eliminates the elements that are prone to damage in prolonged operation. This is an unquestionable advantage when taking into account the operation of the vehicle.
EN
Air pollution in cities is an increasing problem. The increased concentration of toxic harmful substances, including PM10 and PM2.5, is noticeable in the autumn and spring period. This is when the heating period begins. However, the industrial sector is not always responsible for air pollution. Transport also has its share. The share of transport depends on the terrain and buildings. The lack of proper air flow causes emitted suspended dust and other particulates to remain above the city creating smog. In Poland, there are up to 40,000 deaths per year because of PM10 and PM2.5 emissions. The same problem applies to other European cities. Therefore, it is necessary to take specific measures to limit as much as possible the emission of toxic substances. In the case of activities in the transport sector, several solutions are possible. One of them is the use of vehicles with alternative power systems. In the short-term, it is reasonable to use hybrid alternative drives. In order to verify the advantages of using vehicles with hybrid systems, the authors of the article performed comparative tests on a chassis dynamometer. The objects of the study were two vehicles - one with a classic propulsion system and the other with a hybrid system in the current WLTC homologation cycle (WLTP procedure).
PL
Zanieczyszczenie powietrza w miastach stanowi coraz większy problem. Zwiększone stężenia toksycznych szkodliwych substancji, w tym PM10 i PM2.5, jest zauważalne jesienią i wiosną. Jest to początek okresu grzewczego. Jednak sektor przemysłowy nie zawsze jest odpowiedzialny za zanieczyszczenie powietrza. Transport ma również swój udział. Udział transportu zależy od terenu i budynków. Brak odpowiedniego przepływu powietrza powoduje emisję między innymi zawieszonego pyłu, który pozostaje nad miastem, tworząc smog. W Polsce umiera do 40 000 osób rocznie z powodu PM10 i PM2,5. Ten sam problem dotyczy innych miast europejskich. Dlatego konieczne jest podjęcie szczególnych środków w celu ograniczenia w jak największym stopniu emisji toksycznych substancji. W przypadku działań w sektorze transportu możliwe są różne rozwiązania. Jednym z nich jest wykorzystanie pojazdów z alternatywnymi systemami energetycznymi. W perspektywie krótkoterminowej rozsądne jest stosowanie hybrydowych alternatywnych napędów. Aby zweryfikować zalety stosowania pojazdów z układami hybrydowymi, autorzy artykułu przeprowadzili testy porównawcze na hamowni podwoziowej. Przedmiotem badań były dwa pojazdy - jeden z klasycznym układem napędowym, a drugi z układem hybrydowym, w aktualnym cyklu homologacji WLTC (procedura WLTP).
EN
The article presents political and legal aspects regarding the recommendation for the development of hydrogen technology in the economy and in transport. The development of electric cars with hydrogen-powered fuel cells, which took place in recent years in the world, has been outlined. The principles of calculation of average vehicle operating costs applicable in the transport economics are discussed. The estimated average unit operating costs of a statistical passenger car using conventional energy carriers, estimated in the studies of the Motor Transport Institute are quoted. The assumptions and results of the estimation of the average cost per 1 vehicle-kilometre of the electric passenger car’s mileage (BEV) have been presented, as well as the assumptions and results of the estimation of the average unit operating costs of a hydrogen powered passenger car (FCEV). The average unit costs of the mileage of these vehicles have been compared. The predictions regarding the future changes in the average prices of FCEV vehicles have been cited and the average unit costs of operating electric cars with fuel cells by the 2050 have been estimated. The project of administrative support for the development of low-emission transport in Poland was indicated.
EN
Limiting emissions of harmful substances is a key task for vehicle manufacturers. Excessive emissions have a negative impact not only on the environment, but also on human life. A significant problem is the emission of nitrogen oxides as well as solid particles, in particular those up to a diameter of 2.5 microns. Carbon dioxide emissions are also a problem. Therefore, work is underway on the use of alternative fuels to power the vehicle engines. The importance of alternative fuels applies to spark ignition engines. The authors of the article have done simulation tests of the Renault K4M 1.6 16v traction engine for emissions for fuels with a volumetric concentration of bioethanol from 10 to 85 percent. The analysis was carried out for mixtures as substitute fuels – without doing any structural changes in the engine's crankshafts. Emission of carbon monoxide, carbon dioxide, hydrocarbons, oxygen at full throttle for selected rotational speeds as well as selected engine performance parameters such as maximum power, torque, hourly and unit fuel consumption were determined. On the basis of the simulation tests performed, the reasonableness of using the tested alternative fuels was determined on the example of the drive unit without affecting its constructions, in terms of e.g. issue. Maximum power, torque, and fuel consumption have also been examined and compared. Thus, the impact of alternative fuels will be determined not only in terms of emissions, but also in terms of impact on the parameters of the power unit.
PL
Obniżenie emisji CO2 stanowi wyzwanie dla Europy i Świata. Krytyczną wartością jest wzrost średniej temperatury o 1,5 st. C. Transport jest odpowiedzialny za 20–25% emisji dwutlenku węgla. W Polsce znaczącą grupę pojazdów stanowią pojazdy z silnikami zasilanymi dwupaliwowo (benzyna + LPG). Autorzy referatu skupili się na problemie emisji dwutlenku węgla z pojazdów osobowych, których silniki zasilane były gazowym paliwem LPG.
EN
Reducing CO2 emissions is a challenge for Europe and the world. The critical value is an increase in the average temperature of 1.5 deg. C. Transport is responsible for 20-25% of carbon dioxide emissions. In Poland, a significant group of vehicles has dual fuel engines (petrol + LPG). The paper's authors focused on the issue of carbon dioxide emissions from passenger vehicles whose engines were powered by LPG gas.
EN
Hybrid electric vehicles (HEVs) have an increasing presence in passenger transport segment. They have been designed to minimize energy consumption and pollutant emission. However, the actual performance of HEVs depends on the dynamic conditions in which they are used, and vehicle speed is one of the key factors. A lot of excess emission and fuel consumption can be attributed to rapid changes of vehicle speed, i.e. accelerations and decelerations. On the other hand, dynamic driving favours energy recovery during braking. This study examines the relationship between HEVs speed, pollutant emission and fuel consumption. The considerations were based on the results of testing vehicles in WLTC and NEDC driving cycles, performed on a chassis dynamometer. The test objects were two light-duty passenger vehicles, one with series-parallel, gasoline-electric hybrid system and the other, used as a reference, with conventional spark-ignition engine. Both vehicles had similar technical parameters and combustion engines supplied with gasoline. The driving cycles were divided into several parts according to the speed range. For each part, pollutant emission and fuel consumption were determined and appropriate values of selected parameters of driving pattern were calculated. Combining the results of empirical research and calculated parameters allowed to obtain characteristics. Their analysis provided valuable insight into the impact of driving pattern on actual emission and fuel consumption of HEV.
EN
The results of measurements of exhaust emissions in real road traffic differ significantly from the results of stationary homologation tests. One of the solutions, helpful in determining the actual emission, is the creation of stationary exhaust emission tests simulating the use of the vehicle on the road. The article presents the method of reconstructing the synthetic driving test obtained on the basis of road tests and presents the obtained profile of the speed course. The authors discussed the reasonableness of selecting the emission component determining the correctness of the representativity of the stationary test obtained, which determines the amount of work done by the engine.
EN
In the regulations concerning approval of light vehicles starting from September 2019 it will be necessary to conduct exhaust emissions tests both on a chassis dynamometer and for real driving emissions. It is a legislative requirement set forth in EU regulations for the purpose of the RDE (Real Driving Emissions) procedure. To decide on the RDE route for the purpose of the LV exhaust emissions tests many requirements must be fulfilled, regarding for example external temperature and the topographic height of the tests, driving style (driving dynamic parameters), trip duration, length of respective test sections (urban, rural, motorway, etc.). The works on outlining RDE routes are continued across the country in various research centres. Specifying the RDE route for test purposes, i.e. works in which the authors of this article are actively involved, has become a major challenge for future approval surveys concerning the assessment of hazardous emissions from light vehicles and for development studies focusing on - for example - the consumption of energy in electric and hybrid vehicles. The test route has been chosen to ensure that the test is performed on a continual basis. Data were recorded on a constant basis with the minimum duration of the test achieved. The test involved light vehicles and PEMS device for measuring the exhaust emissions, vehicle’s speed, completed route, etc. The device was installed in such manner as to ensure that its impact on the exhaust emissions from the tested vehicle and on the device’s operation is the least. The vehicle load was consistent with the requirements of the standard and included the aforesaid measurement device, the driver and the operator of PEMS. The tests were carried out on working days. The streets and roads used for the tests were hard-surfaced. Measurements were performed in accordance with the requirements of RDE packages (Package 1-4), i.e. taking into account - among others - the engine cold start. The article discusses the method of outlining the test route fulfilling the specific requirements for RDE testing. Chosen results of exhaust emissions from a passenger car with a spark-ignition engine along the defined RDE test route have been provided. The tests discussed in the article are introductory in the area of RDE tests and provide an introduction into further studies of exhaust emissions and energy consumption in real driving conditions in conventional vehicles and vehicles with alternative engines, e.g. hybrid and electric vehicles.
EN
Alternative drives have an increasing share in the global, European and Polish market. The city authorities support primarily the development of electromobility. Progress in these issues is also noticeable in Poland. The increasing number of battery electric vehicles (BEVs) requires increasing energy costs of the country. Therefore, it is necessary to increase energy production. This work estimates how large this energy surplus should be. For this purpose, it was necessary to determine the average energy consumption of an electric vehicle in real traffic conditions, and then to calculate the average energy demand for a selected number of vehicles. Obtained results were related to pollutant emission considered in the well-to-wheel perspective (including generation of electricity). In the article, the authors also referred to the minimum number of charging stations for electric vehicles on the Trans-European Transport Network (TEN-T) in Poland. This is a necessary condition on which depends the use of BEV vehicles not only on the territory of cities, but also throughout the country.
EN
Air pollution is a challenge for municipal authorities. Increased emission of PM10 and PM2.5 particles is particularly noticeable in Poland primarily the autumn and winter period. That is due to the start of the heating season. According to the above data, road transport accounted for approximately 5% of the creation of PM10 particles, ca. 7% of PM2.5 and approximately 32% for NOx. In Poland, suspended particles (PM10 and PM2.5) cause deaths of as many as 45,000 people a year. The issue of smog also affects other European cities. Therefore, it is necessary to undertake concrete efforts in order to reduce vehicle exhaust emissions as much as possible. It is therefore justifiable to reduce the emission of exhaust pollution, particularly NOx, PM, PN by conventional passenger cars powered by compression ignition engines. Emissions by these passenger cars have been reduced systematically. Comparative tests of the above emission of exhaust pollution were conducted on chassis dynamometer of such passenger car in NEDC cycle and in the new WLTC cycle in order to verify the level of emissions from this type of passenger car. Measurements of fuel consumption by that car were also taken. Emission of exhaust pollution and fuel consumption of the this car were also taken in the RDE road test.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.