The article deals with the technological principles regarding the final drying process of the porous ammonium nitrate (PAN) granules in multistage gravitational shelf dryers. The data on the dryer’s optimal technological operating modes are obtained. PAN samples are studied; the regularity of the porous structure change in the granule depending on the dryer’s hydrodynamic and thermodynamic conditions is established. Experimental data obtained during the research will be used to create a methodology for the engineering calculation of gravitational shelf dryers. Moreover, the data on the optimal operating conditions of the drying machines at the final drying stage will be used to improve the technology to form porous granules from agricultural ammonium nitrate.
The article deals with studying the hydrodynamic characteristics of the fluidized bed in gravitation shelf dryers. The algorithm to calculate hydrodynamic characteristics of the fluidized bed in the dryer’s workspace is described. Every block of the algorithm has a primary hydrodynamic characteristics theoretical model of calculation. Principles of disperse phase motion in various areas in the gravitation shelf dryer are established. The software realization of the author’s mathematic model to calculate disperse phase motion trajectory in a free and constrained regime, disperse phase residence time in the dryers’ workspace, polydisperse systems classification is proposed in the study. Calculations of disperse phase motion hydrodynamic characteristics using the software product ANSYS CFX, based on the author’s mathematic model, are presented in the article. The software product enables automating calculation simultaneously by several optimization criteria and visualizing calculation results in the form of 3D images. The disperse phase flow velocity fields are obtained; principles of a wide fraction of the disperse phase distribution in the workspace of the shelf dryer are fixed. The way to define disperse phase residence time91 in the workspace of the shelf dryer in free (without consideration of cooperation with other particles and dryer’s elements) and con-strained motion regimes is proposed in the research. The calculation results make a base for the optimal choice of the gravitation shelf dryer working chamber sizes.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.