Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 22

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
1
EN
Purpose: This study focuses on determining the best possible structure of the orthosis made with FDM 3D printing technology. To produce the samples, a thermoplastic PLA material was selected that met the conditions of biodegradability, biocompatibility and non-toxicity. The samples produced were subjected to a tensile strength test and corrosion resistance. Design/methodology/approach: Studies based on FEM analysis were carried out using the advanced engineering software CAE - Inventor. The samples were designed in the CAD system, while the G-Code path was generated using the PrusaSlicer 2.5.0 program dedicated to the Prusa i3 MK3S+ printer, which was used to create the models. Surface morphology observations of PLA were carried out with a Zeiss SUPRA 35 scanning electron microscope (SEM). The static tensile test was performed on the Zwick/Roell z100 device based on the PN-EN ISO 527:1 standard. Electrochemical corrosion tests were carried out using the Autolab PGSTAT302N Multi BA potentiostat in Ringer solution at a temperature of 37ºC. Findings: The research allowed the appropriate structure of the orthosis made of PLA polymer material using 3D FDM printing technology. The static tensile test, SEM and corrosion tests confirmed the correct application of this material for the selected purpose. It was possible to determine that samples with holes of 10 mm had the highest strength properties. Due to the tensile tests, the average tensile strength of those samples was around 61 MPa. The corrosion parameters of PLA were determined using Tafel analysis. Research limitations/implications: The research methodology proposed in work can be used to study other biomedical materials. The results presented can be the basis for further tests in order to search for the best orthopaedic stabiliser. Originality/value: The innovative part of the article are three different versions of structures intended for making orthoses used in medicine.
EN
Purpose: of this paper is to propose modernisation activities, including the improvement of machines and devices that will increase work safety during the epidemic state for the workplace of an injection moulding machine operator in a selected manufacturing company. Design/methodology/approach: In the work brief analyses of a production line and a workplace of an injection moulding machine operator were carried out. Then the threats that occur at the analysed workplace were identified. The risk assessment was done using three methods: matrix according to the PN-N-18002:2011 standard, Risk Score and PHA. Findings: The results of the occupational risk assessment obtained by the three assessment methods were similar and gave similar results. The greatest and unacceptable risk has occurred for the threat of SARS-CoV-2 virus infection. Therefore, the following modernisation solutions were proposed: the introduction of mandatory epidemiological questionnaires, online training for company employees, the use of a three-axis robot, replacement of traditional disinfection dispensers with automatic ones. Practical implications: The results of re-assessing the occupational risk after introducing the proposed improvements showed that the occupational risk was significantly reduced – mainly to the low or very low levels. Originality/value: The proposed modernisation solutions at the workplace of an injection moulding machine operator can be used for each workplace and each epidemiological state.
EN
The article presents the results of research concerning the effect of anthracite dust with 10%, 20%, 30%, 40% and 50% content in composites with a polypropylene matrix on selected properties. Hardness was examined with the Shore’s D method; stiffness, tensile strength as well as (MFR) Melt Flow Rate and (MVR) Melt Volume Rate of the investigated material were evaluated; wettability of the obtained material was also determined. Surface and volume resistivity were also investigated; the thermal properties of the filler were determined by thermogravimetric analysis (TGA). It was found that the investigated polypropylene composites filled with anthracite dust are hydrophobic materials and the composite hardness and stiffness are growing along with the volumetric increase of anthracite. It was noted that anthracite reinforces the material to a limited extent.
EN
Purpose: The aim of this paper is to present a modern manufacturing method of production and compare the thermal, mechanical, properties of composite materials with aluminium alloy matrix reinforced by Al2O3 particles. Design/methodology/approach: The material for investigation was manufactured by the method of powder metallurgy (consolidation, pressing, hot concurrent extrusion of powder mixtures of aluminium EN AW-AlCu4Mg1 (A) and ceramic particles Al2O3). The amount of the added powder was in the range of 5 mass.%, 10 mass.% and 15 mass.%. Findings: The received results concerning the enhancement of hardness, which show the possibility of obtaining the MMC composite materials with required microstructure, influencing the properties of the new elaborated composite materials components. Concerning the thermal properties, especially the linear thermal expansion coefficient was measured, as well as the dilatometric change of the sample length was analysed. Practical implications: Concerning practical implications it can be stated that the tested composite materials can be applied among others in the transportation industry, but it requires additional research. Originality/value: The received results show the possibility of obtaining new composite materials with controlled and required microstructure with possible practical implications.
5
Content available Polypropylene matrix composite with charcoal filler
EN
Purpose: The aim of the article is to present the thermal, electrical and mechanical properties of the produced polymer composites with a filler in the form of charcoal powder. Design/methodology/approach: The tests were carried out on samples of pure polypropylene (PP) and polymer composites, the matrix of which is polypropylene (PP), and the filler was charcoal powder with a volume fraction of 10%, 20%, 30%, 40% and 50%. The tested polymer composites in the form of granules were produced by extrusion, and then standardised test profiles were made by injection moulding. Findings: The hardness of the tested composites was determined by the Shore D method, the grain size distribution of the filler used was determined using the laser method and its thermal stability was tested using the TGA thermogravimetric analysis. The volume and surface resistivity were also determined and the density was determined. It was found that the charcoal powder used as a filler is characterised by high thermal stability - up to 600°C - and with an increase in its volume share in the polymer matrix, the hardness and density of the produced composites increases. Practical implications: The tested composites can be used as structural composites for complex elements requiring high hardness and strength. Originality/value: The research results indicate the possibility of using charcoal as a filler in polymer matrix, which, due to its low production cost, may be an alternative to expensive carbon fillers.
PL
W artykule przedstawiono charakterystykę kompozytów polimerowych z napełniaczami węglowymi. Materiały te są coraz częściej stosowane jako materiały konstrukcyjne, ze względu na swoje ciekawe właściwości, mogą stanowić konkurencję, w niektórych przypadkach nawet dla stali węglowych. W niniejszej pracy skupiono się na charakterystyce stosowanych napełniaczy węglowych: włókna węglowe i nanorurki węglowe, sadza, grafit, grafen, czysty węgiel kamienny i jego odmiany. Przedstawiono ich wpływ na właściwości różnych osnów polimerowych w zależności od zawartości napełniacza oraz możliwości aplikacyjne powstałych kompozytów.
EN
The paper presents the polymer composites with carbon fillers characterization. These materials are more and more often used as construction materials, because of their interesting properties, they can competitive, in some cases even with carbon steels. This paper focuses on the characterization of: carbon fibers, carbon nanotubes, carbon black, graphite, graphene, fine coal and it's varieties as carbon fillers phase. Their influence on the properties of various polymer matrices, depends on the filler content and application possibilities of the obtained composites were presented.
7
Content available Kompozyty polimerowe z napełniaczem naturalnym
PL
W ostatnich kilkunastu lat można zauważyć wzrost zainteresowania materiałami kompozytowymi WPC. W artykule przedstawiono charakterystykę tych materiałów wzmacnianych naturalnymi surowcami. Istotną ich zaletą jest między innymi możliwość otrzymywania kompozytów tradycyjnymi metodami przetwórstwa plastycznego (wytłaczania i wtryskiwania). Ze względu do dobre własności wytrzymałościowe i użytkowe, a także atrybuty wizualne, znalazły zastosowanie na deski tarasowe, place zabaw, balustrady, pokrycia dachowe itp.
EN
During last years a growing interest could be noticed in WPC composite materials. It is characteristics of these materials reinforced with natural raw materials presented in this article. Definitelly crucial advantage is, among others, the possibility of obtaining composites by traditional methods of plastic processing (extrusion and injection). Due to the good mechanical and functional properties, as well as visual attributes, they were applied to patio boards, playgrounds, balustrades, roof coverings, etc.
8
EN
This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant - supersaturation and ageing, 2nd variant - supersaturation, cold rolling and ageing. The paper presents the results of inicrostructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was realized using a Zeiss LSM 5 Exciter confocal microscope. Cold working of the supersaturated solid solution affects significantly its hardness but the cold plastic deformation causes deterioration of the wear resistance of the finally aged CuTi4 alloy.
EN
This paper presents the influence of casting method and anodic treatment parameters on thickness and structure of an anodic layer formed on aluminium alloys. As test materials was used the aluminium alloy AlSi9Cu3, which was adopted to the casting process and anodic treatment. In this paper are presented the wear test results and metallographic examination, aswell as hardness of non-anodised and anodised alloys subjected to anodising process.The investigations were performed using light and electron microscopy (AFM) for the microstructure determination. The morphology and size of the layer was also possible to determine. The anodising conditions for surface hardening and itsinfluence on properties was analysed. The structure of the surface laser tray changes in a way, that there is a different thicknessof the produced layer. The aluminium samples were examined in terms of metallography using the optical microscope withdifferent image techniques as well as light microscope. Improving the anodization technology with appliance of differentanodising conditions. Some other investigation should be performed in the future, but the knowledge found in this researchconcerning the proper process parameters for each type of alloy shows an interesting investigation direction. The combinationof metallographic investigation for cast aluminium alloys - including electron microscope investigation - and anodisingparameters makes the investigation very attractive for automobile industry, aviation industry, and others, where aluminium alloys plays an important role.
EN
An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.
EN
Purpose: The paper presents the results of the qualitative and quantitative microanalysis of the chemical composition of the MgAl6Zn1 alloy. Design/methodology/approach: The magnesium alloy has been heat treatment at 505°C for 600 min and ageing at 170°C for 720 min. The study was performed on a transmission electron microscope FEI TITAN company operating at 300kV operating voltage. The qualitative and quantitative microanalysis of the chemical composition of the Mg alloy microareas was examined using EDS. Findings: Analysis of the results of the concentration of the main alloying elements in the separation test using various magnifications revealed that with an increase in the share of the magnification of the alloying elements. This increase is referred to a linear, the regression coefficient R2, depending on the test element is in the range 0.84-0.97. Practical implications: Tested MgAl6Zn1 alloy can be applied among the others in automotive industry but it requires additional researches. Originality/value: It was demonstrated that the lower magnesium concentration in the EDS results is connected with the increase of magnification induces an effect of X-rays scattering only from the analysed particles and the effect of Mg matrix is limited.
12
Content available remote Kinetics of precipitation and recrystallisation of titanium copper
EN
Purpose: The main aim of this work is to investigate effect of cold working following supersaturation of alloy copper in change in electrical conductivity of the finally aged CuTi4 alloy. Next, plots were worked out describing the kinetics of precipitation and recrystallisation from titanium copper, based on results of the electric conductivity measurements using the KJMA (Kolmogorov, Johnson, Mehl, Avrami) relationship. Design/methodology/approach: The energy of the nucleation activation, precipitation, and grain growth was calculated by approximating the segments of the straight lines shown in the plots. Findings: As a result of the electrical conductivity tests, the energy of the nucleation activation, growth, and precipitation of new particles during the ageing, was calculated for the two different variants of CuTi4 alloy processing. Research limitations/implications: As a result of the electrical conductivity tests, and using the KJMA (Kolmogorov, Johnson, Mehl and Avrami) relationship, the energy of the nucleation activation, precipitations, and growth of new particles during the ageing, was calculated for two treatment variants. Practical implications: It was found that the activation energy of nucleation of crystal nuclei is lower for the alloy treated according to variant 1st (supersaturation, ageing), while the activation energy of the precipitation and grain growth is lower for the alloy treated according to variant 2nd (supersaturation, cold working Z=50%, ageing). Originality/value: Article presented the energy of the nucleation activation, growth, and precipitation of new particles during the ageing, was calculated for the two different variants of CuTi4 alloy processing, based on the results of measurement of electrical conductivity.
EN
Purpose: The purpose of the paper is to show and compare of modern method composite materials with aluminium alloy matrix reinforced by Ti(C,N) particles manufacturing. Design/methodology/approach: Powders of the starting materials were wet mixed in the laboratory vibratory ball mill to obtain the uniform distribution of the reinforcement particles in the matrix. The mixed powders were then dried in the air. The components were initially compacted at cold state in a die with the diameter of Ø 26 mm in the laboratory vertical unidirectional press - with a capacity of 350 kN. The selected compacting load was sufficient to obtain prepregs which would not crumble and at the same time would not be deformed too much, which would also have the adverse effect on their quality, as the excessive air pressure in the closed pores causes breaking the prepreg up when it is taken out from the die. The obtained PM compacts were heated to a temperature of 480-500°C and finally extruded - with the extrusion pressure of 500 kN. Findings: The received results show the possibility of obtaining the new composite materials with required structure joining positive properties composite materials components. Practical implications: Tested composite materials can be applied among the others in automotive industry but it requires additional researches. Originality/value: It was demonstrated structure of the extruded composite materials with the EN AW-Al Cu4Mg1(A) alloy matrix may be formed by the dispersion hardening with the Ti(C,N) particles in various portions and by the precipitation hardening of the matrix.
EN
Purpose: the aim of the project was to evaluate of the effect of heat treatment and the reinforcing Al2O3 and Ti(C,N) particles content on the corrosion resistance in the NaCl water solution environment on the EN AW-AlCu4Mg1(A) aluminium alloy matrix composite. Design/methodology/approach: Powders of the starting materials were wet mixed in the laboratory vibratory ball mill to obtain the uniform distribution of the reinforcement particles in the matrix. The mixed powders were then dried in the air. The components were initially compacted at cold state in a die with the diameter of O 26 mm in the laboratory vertical unidirectional press – with a capacity of 350 kN. The selected compacting load was sufficient to obtain prepregs which would not crumble and at the same time would not be deformed too much, which would also have the adverse effect on their quality, as the excessive air pressure in the closed pores causes breaking the prepreg up when it is taken out from the die. The obtained PM compacts were heated to a temperature of 480-500°C and finally extruded – with the extrusion pressure of 500 kN. Some of the composite materials were hyperquenched for 0.5 h at the temperature of 495oC with the subsequent cooling in water, and were quench aged next for 6 h at 200°C. Corrosion tests were made in 5% water NaCl solution. Findings: Composite materials were examined without heat treatment and after heat treatment carried out to improve their corrosion resistance. The corrosion susceptibility of the investigated composite materials determined using the potentiodynamic method in the 3% water solution of NaCl depends on the volume fraction of the reinforcing particles and also on the heat treatment status. Practical implications: Tested composite materials can be applicate among the others in automotive industry but it requires additional researches. Originality/value: It was demonstrated corrosion resistance of the extruded composite materials with the EN AW-Al Cu4Mg1(A) alloy matrix may be formed by the dispersion hardening with the Al2O3 and Ti(C,N) particles in various portions and by the precipitation hardening of the matrix.
EN
Purpose: the aim of the project was to evaluate of the effect of heat treatment and the reinforcing BN particles content on the mechanical properties, abrasive wear and corrosion resistance in the NaCl water solution environment on the EN AW-AlCu4Mg1(A) aluminium alloy matrix composite. Design/methodology/approach: Some of the composite materials were hyperquenched for 0.5 h at the temperature of 495°C with the subsequent cooling in water, and were quench aged next for 6 h at 200°C. Hardness tests were made on HAUSER hardness tester with the Vickers method at 10 N. Static compression and tensile tests of the fabricated composite materials were made on the ZWICK 100 type testing machine at room temperature. Abrasion resistance wear tests were carried out with the constant number of cycles of 5000 (120 m) at various loads: 4, 5, 6, 7, and 8 N. Test pieces were rinsed in the ultrasonic washer to clean them and next were weighed on the analytical balance with the accuracy of 0.0001 g to check the mass loss. Corrosion tests were made in 5% water NaCl solution. Findings: Besides visible improvement of mechanical properties: hardness, compression strength and tensile strength, wear resistance there were also observed the influence of heat treatment on the corrosion resistance of composite materials in 3% NaCl solution. Practical implications: Tested composite materials can be applicate among the others in automotive industry but it requires additional researches. Originality/value: It was demonstrated that the mechanical properties, as well as the wear and corrosion resistance of the extruded composite materials with the EN AW-Al Cu4Mg1(A) alloy matrix may be formed by the dispersion hardening with the BN particles in various portions and by the precipitation hardening of the matrix.
EN
Purpose: of the project was evaluation of the effect of heat treatment and of the reinforcing Ti(C,N) particles in the EN AW-AlCu4Mg1(A) aluminium alloy on the mechanical properties, wear resistance. Design/methodology/approach: some of the composite materials were hyperquenched for 0.5 h at the temperature of 495°C with the subsequent cooling in water, and were quench aged next for 6 h at 200°C. Hardness tests were made on HAUSER hardness tester with the Vickers method at 10 N. Abrasion resistance wear tests were carried out with the constant number of cycles of 5000 (120 m) at various loads: 4, 5, 6, 7, and 8 N. Test pieces were rinsed in the ultrasonic washer to clean them and next were weighed on the analytical balance with the accuracy of 0.0001 g to check the mass loss. Findings: Besides visible improvement of mechanical properties and wear resistance there were also observed the influence of heat treatment. Practical implications: Tested composite materials can be applied among others in automotive industry but it requires additional researches. Originality/value: It was demonstrated that the mechanical properties, as well as the wear resistance of the investigated composite materials with the EN AW-Al Cu4Mg1(A) alloy matrix may be formed by the dispersion hardening with the Ti(C,N) particles in various portions and by the precipitation hardening of the matrix.
17
EN
Purpose: The purpose of the paper is to show and compare of modern method composite materials with aluminium alloy matrix reinforced by Al2O3 particles manufacturing. Design/methodology/approach: Material for investigation was manufactured by two methods: powder metallurgy (consolidation, pressing, hot extrusion of powder mixtures of aluminium EN AW-AlCu4Mg1(A) and ceramic particles Al2O3) and pressure infiltration of porous performs by liquid alloy EN AC AlSi12 (performs were prepared by sintering of Al2O3 powder with addition of pores forming agent-carbon fibers). Findings: The received results show the possibility of obtaining the new composite materials with required structure joining positive properties composite materials components. Practical implications: Tested composite materials can be applicate among the others in automotive industry but it requires additional researches. Originality/value: Worked out technologies of composite materials manufacturing can be used in the production of small elements near net shape and locally reinforced elements.
EN
Purpose: The purpose of this paper is application of neural networks in tribological properties simulation of composite materials based on porous ceramic preforms infiltrated by liquid aluminium alloy. Design/methodology/approach: The material for investigations was manufactured by pressure infiltration method of ceramic porous preforms. The eutectic aluminium alloy EN AC – AlSi12 was use as a matrix while as reinforcement were used ceramic preforms manufactured by sintering of Al2O3 Alcoa CL 2500 powder with addition of pore forming agents as carbon fibres Sigrafil C10 M250 UNS manufactured by SGL Carbon Group Company. The wear resistance was measured by the use of device designed in the Institute of Engineering Materials and Biomaterials. The device realize dry friction wear mechanism of reciprocating movement condition. The simulation of load and number of cycles influence on tribological properties was made by the use of neural networks. Findings: The received results show the possibility of obtaining the new composite materials with required tribological properties moreover those properties can by simulated by the use of neural networks. Practical implications: The composite materials made by the developed method can find application among the others in automotive industry as the alternative material for elements fabricated from light metal matrix composite material reinforced with ceramic fibers. Originality/value: Worked out model of neural network can be used as helpful tool to prediction the wear of aluminium matrix composite materials In condition of dry friction.
19
Content available remote Influence of heat treatment on properties and corrosion resistance of Al-composite
EN
Purpose: of the project was evaluation of the effect of heat treatment and of the reinforcing Al2O3 particles in the EN AW-AlCu4Mg1(A) aluminium alloy on the mechanical properties, abrasive and corrosion resistance in the NaCl water solution environment. Design/methodology/approach: some of the composite materials were hyperquenched for 0.5 h at the temperature of 495 degrees centigrade with the subsequent cooling in water, and were quench aged next for 6 h at 200 degrees centigrade. Hardness tests were made on HAUSER hardness tester with the Vickers method at 10 N. Static compression and tensile tests of the fabricated composite materials were made on the ZWICK 100 type testing machine at room temperature. Abrasion resistance wear tests were carried out with the constant number of cycles of 5000 (120 m) at various loads: 4, 5, 6, 7, and 8 N. Test pieces were rinsed in the ultrasonic washer to clean them and next weighed on the analytical balance with the accuracy of 0.0001 g to check the mass loss. Corrosion tests were made in 5% water NaCl solution. Findings: Besides visible improvement of mechanical properties: hardness, compression strength and tensile strength, wear resistance there were also observed the influence of heat treatment on the corrosion resistance of composite materials in 3% NaCl solution. Practical implications: Tested composite materials can be applicate among the others in automotive industry but it requires additional researches. Originality/value: It was demonstrated that the mechanical properties, as well as the wear and corrosion resistance of the sintered composite materials with the EN AW-Al Cu4Mg1(A) alloy matrix may be formed by the dispersion hardening with the Al2O3 particles in various portions and by the precipitation hardening of the matrix.
20
Content available remote Influence of heat treatment on corrosion resistance of PM composite materials
EN
Purpose: of the project was evaluation of the effect of heat treatment and of the reinforcing Al203, Ti(C,N) and BN particles in the EN AW-AlCu4Mg1(A) aluminium alloy on the corrosion resistance in the NaCl water solution environment. Design/methodology/approach: some of the composite materials were hyperquenched for 0.5 h at the temperature of 495 degrees centigrade with the subsequent cooling in water, and were quench aged next for 6 h at 200 degrees centigrade. Corrosion tests were made in 5% water NaCl solution. Findings: Besides visible improvement of heat treatment on the corrosion resistance of composite materials in 3% NaCl solution. Practical implications: Tested composite materials can be applicate among the others in automotive industry but it requires additional researches. Originality /value: It was demonstrated that the corrosion resistance of the sintered composite materials with the EN AW-Al Cu4Mg1(A) alloy matrix may be formed by the dispersion hardening with the Al203, Ti(C,N) and BN particles in various portions and by the precipitation hardening of the matrix.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.