In this paper, we investigate a free boundary problem relevant in several applications, such as tumor growth models. Our problem is expressed as an elliptic equation involving discontinuous nonlinearities in a specified domain with a moving boundary. We establish the existence and uniqueness of solutions and provide a qualitative analysis of the free boundaries generated by the nonlinear term (inner boundaries). Furthermore, we analyze the dynamics of the outer region boundary. The final result demonstrates that under certain conditions, our problem is solvable in the neighborhood of a radial solution.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.