Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Microstructure, mechanical, and corrosion properties of as-cast pure zinc and its binary and ternary alloys with magnesium (Mg), and copper (Cu) additions were investigated. Analysis of microstructure conducted by scanning electron microscopy revealed that alloying additives contributed to decreasing average grain size compared to pure zinc. Corrosion rate was calculated based on immersion and potentiodynamic tests and its value was lower for materials with Cu content. Moreover, it was shown that the intermetallic phase, formed as a result of Mg addition, constitutes a specific place for corrosion. It was observed that a different type of strengthening was obtained depending on the additive used. The presence of the second phase with Mg improved the tensile strength of the Zn-based materials, while Cu dissolved in the solution had a positive effect on their elongation.
EN
This study aimed to develop Fe/Al multilayered metallic/intermetallic composites produced by hot pressing under an air atmosphere. Analyses were carried out on the composite plates made up of alternatively situated sheets of AA1050 aluminum alloy and DN04 low carbon steel, which were annealed at 903 K for 2, 5, and 10 h. Annealing was performed to obtain reaction layers of distinct thickness. The samples were examined using X-Ray diffraction and scanning and transmission electron microscope equipped with an energy-dispersive X-Ray spectrometer. To correlate the structural changes with mechanical properties, microhardness measurements in near-the-interface layers were performed. All the reaction layers grew with parabolic kinetics with η-Al5Fe2 intermetallic phase as the dominant component. After annealing for 5 and 10 hours, a thin sublayer of θ-Al13Fe4 phase was also detected.
EN
In this paper, the microstructural and texture changes in polycrystalline CuZn30 alloy, copper, and AA1050 aluminium alloy have been studied to describe the crystal lattice rotation during shear bands formation. The hat-shaped specimens were deformed using a drop-hammer at the strain rate of 560 s-1. Microstructure evolution was investigated using optical microscopy, whereas texture changes were examined with the use of a scanning electron microscope equipped with the EBSD facility. The microstructural observations were correlated with nanohardness measurements to evaluate the mechanical properties of the sheared regions. The analyses demonstrate the gradual nature of the shear banding process, which can be described as a mechanism of the bands nucleation and then successive growth rather than as an abrupt instability. It was found that regardless of the initial orientation of the grains inside the sheared region, a well-defined tendency of the crystal lattice rotation is observed. This rotation mechanism leads to the formation of specific texture components of the sheared region, different from the one observed in a weakly or non-deformed matrix. During the process of rotation, one of the {111} planes in each grain of the sheared region ‘tends’ to overlap with the plane of maximum shear stresses and one of the <110> or <112> directions align with the shear direction. This allows slip propagation through the boundaries between adjacent grains without apparent change in the shear direction. Finally, in order to trace the rotation path, transforming the matrix texture components into shear band, rotation axis and angles were identified.
EN
The processes of rolling and annealing of explosively welded multi-layered plates significantly affect the functional properties of the composite. In current research, fifteen-layered composite plates were fabricated using a single-shot explosive welding technique. The composites were then rolled up to 72% to reduce layer thickness, followed by annealing at 625 °C for varying times up to 100 h. Microstructure evolution and chemical composition changes were investigated using scanning electron microscopy equipped with energy-dispersive spectroscopy. The mechanical properties of the composite were evaluated by tensile testing, while the strengths of individual layers near the interface were evaluated by micro-hardness measurements. After explosive welding, the wavy interfaces were always formed between the top layers of the composite and the wave parameters decreasing as the bottom layers approach. Due to the rolling process, the thickness of Ti and Al layers decreases, and the waviness of top interfaces disappeared. Simultaneously, the necking and fracture of some Ti layers were observed. During annealing, the thickness of layers with chemical composition corresponding to the Al3Ti phase increased with annealing time. A study of growth kinetic shows that growth is controlled by chemical reaction and diffusion. The results of micro-hardness tests showed that after annealing, a fourfold increase of hardness can be observed in the reaction layers in relation to the Ti, while in relation to Al, the increase of hardness is even 15 times greater.
EN
Metal-intermetallic layered (MIL) composites attract considerable attention due to their remarkable structural and ballistic performance. This study aimed to develop a Ti/Al-based multilayered MIL material by adding ceramic powders, since they can improve the composite’s impact resistance. To this end, an experiment was conducted which a stack of alternating Ti and al sheets bonded by hot pressing; Ti/Al multilayers containing additional layers of Al2O3 and SiC powders were also produced. The samples obtained were examined using electron microscopy techniques. The clads’ mechanical properties were investigated using a Charpy hammer. In the reaction zone, only one intermetallic phase occurred: the Al3Ti phase. The model with an additional Al2O3 layer showed the highest impact energy. none of the Ti/Al clads broke during the Charpy impact test, a result proving their high ductility.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.