Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Due to a lack of organs, cardiac support systems are being implanted in patients with severe congestive heart failure. One of the solutions to overcome complications such as infow obstruction or pump thrombosis, which may occur in the case of ventricular assist devices, is to modify the surface of cannulas for the controlled blood clotting process. The results obtained up till now for developed surface coatings clearly show the influence of topographical and mechanical parameters of the coatings on cell viability and protein adsorption mechanism. The new coatings should enable the controlled growth of scar tissue, resulting in the limitation of thromboembolic events, and the reduction of cystic tissue growth into the fow lumen. The aim of this study is to evaluate the correlation between surface topography parameters on the susceptibility of cells to grow and adhere to the substrate as a solution with potential for use in MCS (mechanical circulatory support) devices. Research on surfaces used in MCS devices and on inflow cannulas has been carried out for many years, while the novelty of the present solution makes it a milestone within that type of application simultaneously allowing for appropriate selection of process parameters. Surface modifcation of titanium alloy Ti6Al7Nb was carried out using vacuum powder sintering of CP-Ti (commercially pure titanium) powder with two morphologies (regular spheres and irregular grains). The characterization of coatings obtained with the proposed method and the influence of measured topographic parameters (applying scanning electron microscopy, contact angle measurement and contact proflometry) on the cytotoxicity and susceptibility to protein adsorption were presented. Advanced albumin adsorption studies have fully confrmed the dependence of surface complexity on protein adsorption. The obtained results show a high potential of the produced coatings toward enabling permanent integration at the implant with the soft tissue.
EN
The work focused on developing functional coatings on titanium substrates that would facilitate the integration with the cardiac tissue and with a specific form of connective tissue like blood. Surface modifications consisted in the laser evaporation of part of the biocompatible layer, thus creating a suitable environment for a particular tissue. For the myocardium integration, the metal surface was refined by biohemocompatible coatings. Such surfaces were the starting point for further modifications in the form of channels. The channeled surfaces enabled a controlled cell migration and proliferation. The interaction of endothelial cells with the material was highly dependent on the surface characteristics such as: topography, microstructure or mechanical properties. The controlled cellular response was achieved by modifying the surface to obtain a network of wells or channels of different dimensions via the laser interference lithography. This technique determined a high resolution shape, size and distribution patterns. As a result, it was possible to control cells in the scale corresponding to biological processes. The surface periodization ensured the optimal flow of oxygen and nutrients within the biomaterial, which was of a key importance for the cell adhesion and proliferation. The work attempted at producing the surface networks mimicking natural blood vessels. To stimulate the formation of new blood vessel the finishing resorbable synthetic coatings were applied on the surface to act as a drug carrier. Therefore, the initial trial to introduce factors stimulating the blood vessels growth was performed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.