Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Austenitic steel 10Cr12Mn14Ni4AlMo and Ti-4Al-3V alloy were irradiated with nanosecond pulsed nitrogen ion and plasma streams in plasma focus devices. The two different modes of the treatment were applied: high power density (greater-than or equal to 10 8 W/cm2) irradiation with melting of the surface layer and irradiation with power density similar to 10 7 W/cm2 below the melting threshold. Structure and phase changes as well as the mechanisms of modification and hardening of the surface layers of the steel and titanium alloy upon applied irradiation are discussed.
EN
A review of results on the design and operation of the new efficient Dense Plasma Focus device PF-6 of medium size (transportable) having bank energy of ca. 7 kJ and possessing a long lifetime is presented. New data on the interaction of the pulsed fast ion beams and dense plasma streams generated at this apparatus with various materials are given. These results are compared with the analogous information received at the biggest facility PF-1000. It is shown that it is possible to have about the same power flux density (in the range of 105 109 W/cm2) in both devices however in different areas. Doses of soft X-rays produced by the device within the resists for the goals of microlithography and micromachining appear to be several times less that it is with the conventional X-ray tube. In biological application of this device, medium- and hard-energy X-rays are exploited in the field of radioenzymology. It was found that the necessary dose producing activation/inactivation of enzymes can be by several orders of magnitude lower if used at a high-power flux density in comparison with those received with isotope sources. In medicine, short-life isotope production for the goals of the positron emission tomography (medicine diagnostics) is possible by means of the fast ions generated within DPF. All these experiments are discussed in the framework of pulsed radiation physics and chemistry in its perfect sense thereto the criteria are formulated.
EN
The report describes some of the results obtained in an experimental study of the impact of a powerful plasma stream and a fast ion beam generated in a PF-1000 device on different materials perspective for the use in radiation loaded parts of pulsed plasma installations. Investigations were done during and after the interaction processes. It is shown that in case of irradiation of samples only by high power flux density plasma streams the effect of detachment still preserved. At the same time a low power flux density high-energy ion beam plays an important role in the process of saturation of the irradiated material by hydrogen.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.