Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Serviceability of cut slope and embankment under seasonal climate variations
EN
In the next 20 years, there will be an extensive investment in transport infrastructure. Although the cut and embankment slopes seem to have the same appearance, they have different responses to climate variations. Understanding their characteristics and performance is necessary to design a safer and more sustainable slope infrastructure. This paper provides a thorough examination of the seasonal performance of cut slopes and embankments. Furthermore, this study suggests an introduction to the impacts of climate change, amplifying seasonal shrinkage–swelling and progressive failure of slope construction under extreme drought and precipitation. Volumetric water content and pore water pressure fluctuations due to seasonal variation were analysed and compared from both the cut slope and the embankment. Moreover, stress path and slope deformation were also investigated in this study to understand the behaviour of the cut slope and the embankment. The results suggest that the cut slope retains more pore water pressure during the wet season due to its lower permeability than an embankment with respect to the construction history. However, pore water pressure and displacement in the cut slope tend to be increased due to the consolidation process after excavation, which requires more time to reach equilibrium. In addition, greater displacement in the cut slope can increase the possibility of delayed failure in the future.
EN
Soil compaction has contrasting efect on soil strength (i.e., positive) and vegetation growth (i.e., negative), respectively. Biochar has been utilized mostly in combination with soils in both agricultural felds (i.e., loose soils) and geo-structures (i.e., dense soil slopes, landfll cover) for improving water retention due to its microporous structure. Biochar is also found to be useful to reduce gas permeability in compacted soil recently. However, the efciency of biochar in reducing gas permeability in loose and dense soils is rarely understood. The objective of this study is to analyze efects of compaction on gas permeability in soil at diferent degrees of compaction (i.e., 65%, 80% and 95%) and also diferent biochar amendment contents (0%, 5% and 10%). Another aim is to identify relative signifcance of parameters (soil suction, water content, biochar content and compaction) in afecting gas permeability. Experiments were conducted before applying k-nearest neighbor (KNN) modeling technique for identifying relative signifcance of parameters. Biochar was synthesized from a coastal invasive species (water hyacinth), which has relatively no infuence on food chain (as unlike in biochar produced from biomass such as rice husk, straw, peanut shell). Based on measurements and KNN modeling, it was found that gas permeability of biochar-amended soil is relatively lower than that of soil without amendment. It was found from KNN model that for denser soils, higher amount of soil suction is mobilized for a signifcant increase in gas permeability as compared to loose soils. Among all parameters, soil suction is found to be most infuential in afecting gas permeability followed by water content and compaction.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.