The article discusses one of the most popular methods of diagnosing selected damages of marine piston engines, which is the indication or measurement of pressure changes in the engine’s combustion chamber. Improving the quality of indicator diagrams may contribute to the increase in the efficiency of using the parameters indicated in the diagnostics of marine piston engines. Measurement errors during engine indication are primarily caused by measuring channels that connect the combustion chamber to the pressure sensor. One way to avoid these errors is to install the pressure sensor directly in the combustion chamber. It seems that it is possible to eliminate these errors. However, there is a risk that the pressure sensor will be damaged by the effect of high temperature on it during combustion of the fuel-air mixture in the engine’s combustion chamber. The article presents the results of tests that indicate that the measured temperatures in the place where the sensor was installed (in the combustion chamber) did not exceed the critical value specified by the pressure sensor manufacturer. The article also presents the results of cylinder pressure measurement not only in the combustion chamber but also in two other points - on the thread of the indicator cock and in the measuring channel between the indicator cock and the cylinder head. The tests were carried out in a wide range of engine load technically efficient and with simulated damage in the fuel injection system. The article presents a comparative analysis of the parameters read out of the indicator diagram for the three abovementioned pressure measurement locations. It was shown that the pressure measurements carried out directly in the combustion chamber are free from errors resulting from the influence of measuring channels and indicator cock.
Marine engines are very complex technical objects, having many important functional systems, which include, inter alia, injection system, characterized by high unreliability. In this system, there may be different types of defects (damage) that affect the engine parameters, including specific fuel consumption, as well as failures endanger the safety of the ship. The indicator diagrams and analysis of indicated parameters have limited utility in the diagnosis of damages of marine engine, although this is a method commonly used in operational practice. To achieve greater diagnostic effectiveness, when, based on indicator diagrams, are calculated and then the characteristics of heat release is analysed - net of heat release characteristics and the intensity of the heat release, it was demonstrated. This procedure is particularly effective in the diagnosis of damages of marine diesel engine injection system components. It has been shown that the characteristics of heat release contain information about the condition of the injection systems, which enable to diagnose their failures. This is shown on the example of a clogged nozzle holes (their carbonizations). The obtained results allowed selecting the diagnosis symptoms, useful in detecting these faults in the injection system, from the characteristics of heat release: net heat release (Q) and intensity of heat release (q). The object of the research was typical marine medium speed engine Sulzer A25/30.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.