The paper proposes a stand that can be used for the testing of propellers and rotors with diameters up to 2.4 m, whose areas of application encompass, inter alia, vertical takeoff and landing (VTOL) type multi-rotor drone systems. The presented solution allows for testing propellers in systems with electric motors. To a certain extent, it is possible to achieve an increase in the measuring range by changing electric motors, power supply systems and measuring sensors. The paper presents several solutions for test stands that can be applied in the testing of propeller parameters, and commercially available propellers have also been deployed in the testing routines. The paper briefly presents the concept of the stand and its design, as well as the principle of operation and structural calculations underlying its functioning, after which the numerical model of the test stand is explained. The article then demonstrates the particular results of the test stand model’s functioning using the EMRAX 188 electric motor and two propellers, namely a commercial Aerobat propeller and a composite propeller designed and manufactured at the Łukasiewicz - Institute of Aviation. Thus, the paper presents both the theoretical results that follow from the model and the results of experimental research.
The article presents an experimental method of determining the geometric properties of jet engine rotor airfoils based on modal vibration testing. The procedure is based on adjusting the results of analytical calculations to the laboratory outcomes. Experimental tests were carried out on a set of 20 jet engine fan blades made of AL7022-T6 aluminium alloy. Each blade differed in weight and geometric dimensions within the accepted design tolerance. Numerical analysis of five airfoils that differed in thickness was performed. Modal vibration test results were summarised and compared with the results obtained by the numerical method. The comparison revealed a high similarity of the frequency and form of vibrations acquired by numerical simulation for each of the blades in relation to the executed vibration testing. Based on the verification of the theoretical model with the results obtained through experimental testing, conclusions were drawn about the object’s dynamic behaviour and its technological quality and geometric properties, whereby each of airfoil was probably thinned.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.