Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Carpathian Flysch Belt represents a Paleogene accretionary wedge (External Western Carpathians  – EWC) located in front of the narrow Pieniny Klippen Belt zone and the Cretaceous Central Western Carpathian nappe stack. The Flysch Belt is formed of several nappes thrust over the slope of the European Platform in the Miocene. This study is focused on the uppermost Magura Nappe, which consists of the Rača, Bystrica and Krynica subunits. As there are no relics of pre-Miocene oceanic crust in the EWC, the sedimentary rocks of the Flysch Belt are the only source of information available about the Alpine collisional events. U-Pb geochronology was applied to detrital rutile from sandstones of the Magura Nappe in order to better understand the closure of the Alpine Tethys in the Western Carpathians. Ten medium-sized sandstone samples were collected across the Bystrica and Krynica subunits in the Nowy Targ region in southern Poland. The samples represent synorogenic clastic sediments with inferred deposition ages between the Late Cretaceous and Oligocene. Approximately 200 rutile grains were separated from each sandstone sample and around half of them were selected for further analyses. The age and appearance (shape, inclusions, zoning etc.) of the dated rutile show significant variations, suggesting derivation from various sources. The most prominent age peaks represent the Variscan (c. 400–280 Ma) and Alpine (c. 160–90 Ma) tectonic events which are well-pronounced in all but the oldest dated sample. It is also noteworthy that four distinct Alpine signals were detected in our rutile data set. The two most prominent peaks with ages of 137–126 Ma and 115–105 Ma are found in majority of the samples. In two sandstone samples, deposited between the Eocene –Oligocene and the Late Cretaceous–Paleocene, the youngest peak of 94–90 Ma appears. Another peak of 193–184 Ma is also present in these two samples, as well as in another sandstone deposited between the Paleocene and the Eocene. In addition, most samples show few Proterozoic ages (approx. 1770 Ma, 1200 Ma, 680 Ma and 600 Ma). Since metamorphic rutile requires relatively high pressure to crystallize, its formation in the course of an orogeny is possible in a subduction setting. Hence, our new age data may reflect tectonic events related to subduction of oceanic crust and overlying sediments. Tentatively, we propose that recognizable events include the Jurassic subduction of the Meliata Ocean (~180–155 Ma), the Early Cretaceous thrust stacking of the Veporic and Gemeric domains (140–105 Ma) and possibly the Late Cretaceous subduction of the Váh Ocean (c. 90 Ma). In addition to dating, the Zr content of the rutile formed during the Alpine orogeny was measured by electron microprobe at the AGH University in Krakow. The amount of Zr varies between 37–420 ppm in almost all grains, with the exception of 4 rutile grains where ~1100 ppm was reached. The Zr in rutile thermometer, based on the approach of Kohn (2020) was used to calculate the possible metamorphic conditions at 450–650°C and >7.5 kbar. This data set corroborates formation of the Alpine rutile under relatively high pressure and rather low to moderate pressure/temperature gradient, i.e. typical of subduction-related tectonic environments.
EN
Concentrations of a large set of major and trace elements, and Sr, Nd and Pb isotope ratios were measured in Holocene sediments cored in the western deep Black Sea in order to unravel: (1) the controls of element enrichment, and (2) sources of the detrital component. The transition of the basin from oxic to euxinic resulted in enrichment or depletion in a number of elements in the deep-sea sediments. Authigenic Fe enrichment appears to depend on the amount of Fe mobilized from the sediment through the benthic redox shuttle mechanism and free H2S in the water column (degree of “euxinization”). Manganese enrichment is controlled by diagenetic reactions within the sediment: the dissolution of Mn minerals, Mn2+ diffusion upward and reprecipitation. Barium enrichment is also controlled by diagenetic reactions, sulfate reduction and methanogenesis, that take place above and below the sulfate-methane transition, respectively. The major part of V, Co, Ni, Cu, Zn, Cr, Mo, Cd and Sb is inferred to have co-precipitated with Fe in the euxinic deep waters and to have been incorporated into authigenic Fe-sulfides. Basin reservoir effect additionally influences the Mo enrichment. The U enrichment is interpreted to have a different origin in the two organic-rich stratigraphic units (II and I). It is inferred to be: (i) at the expense of the U inventory of the deepwater pool and a result of inorganic reduction of U at euxinic conditions in the lower Unit II; and (ii) at the expense of the U inventory of the surface water pool and a result of biogenic uptake and transfer to the sediment by the plankton in the upper Unit I. The high field strength elements are closely linked to the detrital component and their depletion in the organic-rich sediments reflects a dilution of the detrital component by the biogenic one. The enrichments of REE, Sn and Th are likely controlled by adsorption on clay minerals. Sr-Nd-Pb isotope compositions of the alumino-silicate component of the studied sediments are relatively uniform. They are most likely controlled by riverine suspended matter supplied mainly in the NW Black Sea (Danube Delta) and transported southward by marine currents, and to a lesser degree by suspended matter from the small rivers draining SE Bulgaria and NW Turkey. Wind-blown dust from the Sahara Desert appears to have a minor contribution to the alumino-silicate component of the sediments. The slight shift in the Pb isotopes in Unit I upper layers is possibly caused by the addition of anthropogenic Pb.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.