Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The purpose of the work is to synthesize and investigate the character of structure formation, phase composition and properties of model alloys Fe75Cr25, Fe70Cr25Zr5, and Fe69Cr25Zr5B1. Design/methodology/approach: Model alloys are created using traditional powder metallurgy approaches. The sintering process was carried out in an electric arc furnace with a tungsten cathode in a purified argon atmosphere under a pressure of 6·104 Pa on a water cooled copper anode. Annealing of sintered alloys was carried out at a temperature of 800°C for 3 h in an electrocorundum tube. The XRD analysis was performed on diffractometers DRON-3.0M and DRON-4.0M. Microstructure study and phase identification were performed on a REMMA-102-02 scanning electron microscope. The microhardness was measured on a PMT-3M microhardness meter. Findings: When alloying a model alloy of the Fe-Cr system with zirconium in an amount of up to 5%, it is possible to obtain a microstructure of a composite type consisting of a mechanical mixture of a basic Fe2(Cr) solid solution, solid solutions based on Laves phases and dispersive precipitates of these phases of Fe2Zr and FeCrZr compositions. In alloys of such systems or in coatings formed based on such systems, an increase in hardness and wear resistance and creep resistance at a temperature about 800°C will be reached. Research limitations/implications: The obtained results were verified during laser doping with powder mixtures of appropriate composition on stainless steels of ferrite and ferrite-martensitic classes. Practical implications: The character of the structure formation of model alloys and the determined phase transformations in the Fe-Cr, Fe-Cr-Zr, and Fe-Cr-B-Zr systems can be used to improve the chemical composition of alloying plasters during the formation of ferrite and ferrite-martensitic stainless steel coatings. Originality/value: The model alloys were synthesized and their phase composition and microstructure were studied; also, their microhardness was measured. The influence of the chemical composition of the studied materials on the character of structure formation and their properties was analysed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.