Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study examined the mechanical properties of a para-aramid filament according to the processing conditions of air-jet textured yarns (ATY). The specimens were prepared by changing the yarn speed, over feed ratio, air pressure, and heater temperature, which are important processing factors in the ATY process. The basic physical properties of the ATY, such as denier, tenacity, breaking strain, and initial modulus, were measured and their thermal shrinkage, such as dry and wet shrinkage, were measured to determine the thermal stability of the aramid ATY. In addition, the instability of para-aramid ATY were measured and assessed with the loop formation of ATY, according to the ATY process parameters. An examination of the effects of process parameters on the physical properties of aramid ATY revealed the core overfeed and air pressure to be the main factors. A high core overfeed and air pressure make the aramid ATY crimpy in the yarn core and entangle the fluffy loops on the yarn surface, resulting in an increase in the yarn linear density and breaking strain as well as a decrease in the tenacity and initial modulus. In contrast, these yarn physical properties were unaffected by the yarn speed, heater temperature, and wetting treatment. In addition, the dry and wet thermal shrinkage were unaffected by the process parameters of ATY. On the other hand, the instability decreased with increasing core overfeed and heater temperature and increased with increasing air pressure. These results showed that a high core overfeed makes the aramid ATY crimpy with an entangled yarn structure, and high air pressure helps provide small loops on the yarn surface. Finally, a high heater temperature makes the crimpy ATY structure more stable due to the strong heat set, which results in low instability.
EN
This study examined the far-infrared emission characteristics and wear comfort properties of ZrC-imbedded heat storage knitted fabrics. For this purpose, ZrC-imbedded, heat storage PET (polyethylene terephthalate) was spun from high-viscosity PET with imbedded ZrC powder on the core part and low-viscosity PET on the sheath part using a conjugated spinning method. ZrC-imbedded PET knitted fabric was also prepared and its physical properties were measured and compared with those of regular PET knitted fabric. In addition, ingredient analysis and the far-infrared emission characteristics of the ZrC-imbedded knitted fabrics were analyzed by energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The thermal properties, moisture absorption, and drying properties of the ZrC-imbedded PET knitted fabric were measured and compared with those of the regular PET knitted fabric. The mechanical properties using the FAST (fabric assurance by simple testing) system and the dye affinity of the ZrC-imbedded knitted fabric were also measured and compared with those of regular PET knitted fabric.
3
Content available remote Study of pool boiling and critical beat flux enhancement in nanofluids
EN
The pool boiling characteristics of dilute dispersions of alumina, zirconia and silica nanoparticles in water were studied. These dispersions are known as nanofluids. Consistently with other nanofluid studies, it was found that a significant en-hancement in Critical Heat Flux (CHF) can be achieved at modest nanoparticle concentrations ( <0.1% by volume). Buildup of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly improves the surface wettability, as shown by a reduction of the static contact angle on the nanofluid-boiled surfaces compared with the pure-water-boiled surfaces. CHF theories support the nexus between CHF enhancement and surface wettability changes. This represents a first important step towards identification of a plausible mechanism for boiling CHF enhancement in nanofluids.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.