This paper investigated the relationship between the strength of fractured rock and the crack propagation process. A series of uniaxial compression tests were carried out on the rock-like material specimens with single pre-fabricated flaw. Moreover, DIC (digital image correlation) technology was utilized to monitor and analyze the failure process of specimens. The initiation of each crack was defined as a key event, and the relationship between several key events and the axial load of the specimen during the crack propagation was quantitatively analyzed. The time-sequence analysis of crack propagation was also conducted by selecting benchmark points on the both sides of major cracks. It can be found that only the wing crack propagation occurs and there is no obvious shear crack before the peak strength. When the first secondary crack initiated, the specimen reached its peak strength and the wing crack just reached its critical length. Beyond the peak strength, secondary cracks initiated and coalesced rapidly, which leads to the sudden failure of fractured rock. Therefore, the peak strength of the specimen can be assessed by taking the critical length of the steadily propagating wing crack as the condition which determines whether the specimen reaches the peak strength. Furthermore, the discrete element numerical simulation was also implemented to confirm the experimental results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.