Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Detecting manufacturing defects of bearings are difficult because of their unique topography. To find adequate methods for diagnosis is important because they could be responsible for serious problems. Wavelet transform is an efficient tool for analyzing the transients in the vibration signal. In this article we are focusing on industrial grinding faults on the outer ring of tapered roller bearings. Nine different real-valued wavelets, Symlet-2, Symlet-5, Symlet-8, Daubechies (2, 6, 10, 14), Morlet and Meyer wavelets are compared to a designed complex Morlet wavelet according to the Energy-to-Shannon-Entropy ratio criteria to determine which is the most efficient for detecting the manufacturing fault. Parameters of the complex Morlet wavelet are adjustable, thus, it has more flexibility for feature extraction. Genetic algorithm is applied to optimize the center frequency and the bandwidth of the designed wavelet. A sophisticated filtering procedure through multi-resolution analysis is applied with autocorrelation enhancement and envelope detection. To determine the efficiency of the designed wavelet and compare to the other wavelets, a test-rig was constructed equipped with high-precision sensors and devices. The designed wavelet is found to be the most effective to detect the manufacturing fault. Therefore, it has the capacity for an industrial testing procedure.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.