Transparent Yb3+/Er3+ glass-ceramic was successfully obtained by the extrusion method. The extrusion of oxyfluoride tellurite-germanate glass co-doped with Yb3+ and Er3+ ions at 520˚C resulted in the formation of Ba0.75Er0.25F2.25 nanocrystals, leading to an increase in the upconversion (UC) emission intensity of 35 times in glass-ceramic with respect to the glass. The glass to glass-ceramic transition was confirmed by X-ray diffraction (XRD) and Transmission electron microscope (TEM). Also, the structural changes that occurred during crystallization were assessed using Fourier-transform infrared (FTIR) spectroscopy. Furthermore, the pump power and temperature UC emission dependence of glass and glass-ceramic under 976 nm laser excitation were investigated in detail. The assessments showed that i) two-phonons are involved in the UC process and ii) the temperature has a significant influence over it. The Yb3+/Er3+ codoped glass-ceramic shows relatively high Sα and Sr values in a wide temperature range from 300 to 573 K, presenting the maximal Sα value of 3.50 × 10-3 at 573 K and the maximal Sr value of 6.30 × 10-3 at 364 K. These results suggest that the glass-ceramic is a good candidate for optical applications such as luminescent thermometry.
Titania dioxide (TiO₂) layers were synthesized via the acid-catalysed sol-gel route using titania (IV) ethoxide, and then annealed at temperatures varying in the range of 150-700 °C. The research concerned the effect of annealing temperature on the structure of TiO₂ layers, their surface morphology, and their optical properties. Further, X-ray diffractometry, and Raman spectroscopy were used to determine the structure of TiO₂ layers. Scanning electron and atomic force microscopy were used to study the surface morphology of TiO₂ layers. Transmittance, reflectance, absorption edge, and optical homogeneity were investigated by UV-VIS spectrophotometry, while the refractive index and thicknesses of TiO₂ layers were measured using a monochromatic ellipsometer. Chromatic dispersion characteristics of the complex refractive index were determined using spectroscopic ellipsometry. Structural studies have shown that the TiO₂ layers annealed at temperatures up to 300 °C are amorphous, while those annealed at temperatures exceeding 300 °C are polycrystalline containing only anatase nanocrystals with sizes increasing from 6 to 20 nm with the increase of the annealing temperature. Investigations on the surface morphology of TiO₂ layers have shown that the surface roughness increases with the increase in annealing temperature. Spectrophotometric investigations have shown that TiO₂ layers are homogeneous and the width of the indirect optical band gap varies with annealing temperature from 3.53 eV to 3.73 eV.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.