The conducted studies were focused on the development of the gypsum material exhibiting self-cleaning properties. To this end, the raw gypsum was mixed with unique TiO2-based photocatalysts, previously modified by nitrogen and/ or carbon doping. The photocatalytic activity of the obtained gypsum plasters was evaluated trough the degradation of model organic compound (Reactive Red 198) under UV-vis irradiation. The impact of the photocatalysts presence on the physicochemical properties of the obtained gypsum plasters was evaluated. Furthermore, the role of non-metals presence on the photocatalytic properties of the TiO2 was determined. It was confirmed that the addition of N,C co-modified titanium dioxide into gypsum bestows this material with self-cleaning properties. The highest dye removal rate was displayed by the gypsum plaster containing optimal amount (10 wt%) of co-modified TiO2/N,C photocatalyst, after 20 hours of UV-vis irradiation.
In presented studies the photocatalytic decomposition of NOx on gypsum plates modified by TiO2-N,Cphotocatalysts were presented. The gypsum plates were obtained by addition of 10 or 20 wt.% of different types of titanium dioxide, such as: pure TiO2 and carbon and nitrogen co-modified TiO2 (TiO2-N,C) to gypsum. TiO2-N,C photocatalysts were obtained by heating up the starting TiO2 (Grupa Azoty Zakłady Chemiczne Police S.A) in the atmosphere of ammonia and carbon at the temperature: 100, 300 i 600ºC. Photocatalyst were characterized by FTIR/DRS, UVVis/DR, BET and XRD methods. Moreover the compressive strength tests of modified gypsum were also done. Photocatalytic activity of gypsum plates was done during NOx decomposition. The highest photocatalytic activity has gypsum with 20 wt.% addition of TiO2-N,C obtained at 300ºC.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Photocatalytic disinfection of Escherichia coli by carbon modified TiO 2 photocatalysts was tested under UV and visible light irradiation. Carbon modification of TiO2 in a pressure reactor was conducted at 120°C for 4 h. For modification purposes, five alcohols were used (methanol, ethanol, n-butanol, 2-butanol, and tert-butanol). The amount of carbon in photocatalysts was calculated with a termogravimetric analyser. It was found that photocatalysts with low content of carbon have better antibacterial ability under visible light irradiation and photocatalysts with higher content of carbon have better antibacterial ability under UV light irradiation.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.