Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Intelligent voltage controller based on ufzzy logic for DC-DC boost converter
EN
One of the photovoltaic (PV) applications is as a renewable energy source. The photovoltaic (PV) output voltage becomes the voltage source for the DC-DC boost converter. To adjust the DC-DC boost converter's output voltage, the control system needs to adjust the output voltage of the DC-DC boost converter applied by the PV. The voltage generated by the DC-DC boost converter follows the needs of the electrical equipment or load. The control system on the DC-DC converter uses a Proportional Integral (PI) Controller and a Fuzzy Logic (FL). The PI controller and FLC can control the output voltage of the DC-DC converter. This PI controller is compared with FL to obtain the appropriate output voltage for the dc-dc boost converter. The output of this PI and FLC controller system is the duty cycle used to control the DC-DC boost converter's performance. The PI controller system is tuned by autotuning and FL to obtain control parameters of a DC-DC boost converter with a 12 V PV voltage source and a 24 V output voltage. The results of the PI controller constants obtained are: kp = 1.8, ki = 0.9, maximum overshoot voltage (Mp) = 39 V (62.25%), rise time = 1.0 seconds, settling time = 5.0 seconds, transient state = 5.0 seconds, and steady-state error of 8.4%. The simulation results of the FL controller constants were obtained: 4.2% steady-state error and a settling time of 1.5 seconds, with a 4.2% steady-state error. The results of the control output voltage DC-DC boost converter fed by PV showed FL was better than the PI controller.
PL
Jednym z zastosowan fotowoltaicznych (PV) jest odnawialne zrodlo energii. Napiecie wyjsciowe fotowoltaiki (PV) staje sie zrodlem napiecia dla prztwomicy podwyzszajacej DC-DC. Abywyregulowac napicie wyjsciowe przetromicy podwyzszajacej DC-DC, system sterowania musi wyregulowac napieciewyjściowe przetwornicy podwyższającej DC-DC, system sterowania musi wyregulować napięcie wyjściowe przetwornicy podwyższającej DC-DC stosowanej przez PV. Napięcie generowane przez przetwornicę podwyższającą DC-DC odpowiada potrzebom sprzętu elektrycznego lub obciążenia. System sterowania w przetworniku DC-DC wykorzystuje sterownik proporcjonalno-całkujący (PI) i logikę rozmytą (FL). Kontroler PI i FLC mogą sterować napięciem wyjściowym przetwornika DC-DC. Ten regulator PI jest porównywany z FL w celu uzyskania odpowiedniego napięcia wyjściowego dla przetwornicy podwyższającej DC-DC. Wyjściem tego systemu kontrolera PI i FL jest cykl pracy używany do sterowania wydajnością przetwornicy DC-DC boost. System regulatora PI jest dostrajany przez autotuning i FL w celu uzyskania parametrów kontrolnych przetwornicy podwyższającej napięcie DC-DC ze źródłem napięcia PV 12 V ki napięciem wyjściowym 24 V. Otrzymane wyniki stałych regulatora PI to: kp = 1,8, ki = 0,9, maksymalne napięcie przeregulowania (Mp) = 39 V (62,25%), czas narastania = 1,0 s, czas ustalania = 5,0 s, stan przejściowy = 5,0 s, błąd stanu ustalonego 8,4%. Uzyskano wyniki symulacji stałych regulatora FLC: błąd stanu ustalonego 4,2% i czas ustalania 1,5 sekundy z błędem stanu ustalonego 4,2%. FL był lepszy od kontrolera PI.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.