Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The high resistance of an infant endotracheal tube (ETT) can markedly impair ventilation and gas exchange. Since some manufacturers cover the inner surface of their ETTs with a silicon layer in order to diminish deposition and ease mucous evacuation from airway, via surface roughness decrease, we assessed whether the silicon layer may affect tube resistance, work of breathing and other parameters of ventilation. We compared SUMI (Poland) non-siliconised and siliconised polyvinyl chloride ETTs (2.5, 3.0 and 4.0 mm ID), twenty of each type and size combination. Simulating volume-controlled ventilation with the hybrid (numerical–physical) lung models of a premature infant and a 3-month-old baby peak inspiratory pressure (PIP), peak inspiratory and expiratory flow (PIF, PEF), (patient + ETT) inspiratory and expiratory airway resistance (Rins, Rexp) and work of breathing by ventilator (WOBvt) were measured. Additionally, images of the both type surfaces were taken using Hitachi TM-1000 electron microscope. When 2.5 and 3.0 mm ID ETTs were examined, laminar flow (Re <2300) across the tube was observed, and there were no clinically significant differences in the ventilation param-eters between non-siliconised and siliconised tubes. Whereas, when 4 mm ID ETTs were tested, turbulent flow was observed, and PIP, Rins, Rexp and WOBvt were significantly lower (5%, 17%, 17%, and 7%, respectively) (P < 0.05), but PIF and PEF were significantly higher (8%, 14%) (P < 0.05). Thus, the silicone inner surface of ETT offers less resistance and WOBvt in presence of turbulent flow. However, artifacts observed on the surface of non-siliconised and siliconised ETTs can potentially impair ventilation.
2
Content available remote Middleware for Managing QoS Adaptation of SOA Applications
EN
The paper describes an improvement over our previous work: the concept of an Adaptive SOA Solution Stack (based on the IBM S3 model) which applies an AS3 element pattern to S3 layers where the need for adaptation arises. The presented improvement, called the adaptation strategy management process, represents a solution that enables an Adaptation Architect to model Quality of Service (QoS) adaptation in a declarative manner, automatically deploy it into a running system and then monitor its execution. Its main objective is to allow the Adaptation Architects to view the adaptation process on a higher level of abstraction and employ adaptivity mechanisms in working applications in an easy way. This is accomplished by incorporating the adaptive application metamodel developed in the DiVA EU project and adjusting it to the SOA context. This paper explains the challenges involved in adaptation strategy management and proposes extensions to the DiVA metamodel. Subsequently, it presents a method by which the Adaptive Manager (a component of the AS3 adaptation loop responsible for making decisions about adaptation) can execute adaptation strategies in accordance with the adaptation model. The presented approach is evaluated in a case study, creating an adaptation strategy and monitoring its impact on an application prototype.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.