Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR) was defi ned and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System) and LEADER (Lead-cooled European Advanced Demonstration Reactor) projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA) are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs), and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB) code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.
EN
The partitioning and transmutation (P&T) of spent nuclear fuel is an important fi eld of present development of nuclear energy technologies. One of the possible ways to carry out the P&T process is to use the accelerator driven systems (ADS). This technology has been developed within the EURATOM Framework Programmes for several years now. Current research in this fi eld is carried out within the scope of 7th FP project FREYA. Important parts of the project are experiments performed in the GUINEVERE facility devoted to characterising the subcritical core kinetics and development of reactivity monitoring techniques. The present paper considers the effects of control rods use on the core reactivity. In order to carry out the evaluation of the experimental results, it is important to have detailed core characteristics at hand and to take into consideration the differences in the effect of control rods acting separately or together (the so-called shadow effect) on both the reactivity value and the measured neutron fl ux. Also any core asymmetry should be revealed. This goal was achieved by both MCNP simulations and the experimental results. However, in the case of experimental results, the need for calculating respective correction factors was unavoidable.
3
EN
The perspective of nuclear energy development in the near future imposes a new challenge on a number of sciences over the world. For years, the European Commission (EC) has sponsored scientific activities through the framework programmes (FP). The lead-cooled fast reactor (LFR) development in the European Union (EU) has been carried out within European lead-cooled system (ELSY) project of the 6th FP of EURATOM. This paper concerns the reactor core neutronic and burn-up design studies. We discuss two different core configurations of ELSY reactor; one loaded with the reference – mixed oxide fuel (MOX), whereas the second one with an advanced fuel – uranium- -plutonium nitride. Both fuels consist of reactor grade plutonium, depleted uranium and additionally, a fraction of minor actinides (MA). The fuel burn-up and the time evolution of the reactor characteristics has been assessed using a Monte Carlo burn-up code (MCB). One of the important findings concerns the importance of power profile evolution with burn-up as a limiting factor of the refuelling interval.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.