Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The city of Krakow located in southern Poland ranks among the most polluted urban agglomerations in Europe. There are persisting controversies with respect to impact of different pollution sources operating in Krakow agglomeration on air quality within the city. The presented pilot study was aimed at exploring the possibilities offered by elemental and carbon isotope composition of total suspended particulate matter (TSPM) for better characterization of its sources in Krakow atmosphere. The analyses of carbon isotope composition of total carbon in the investigated TSPM samples were supplemented by parallel analyses of radiocarbon content in atmospheric carbon dioxide (CO2). This study revealed large seasonal variability of carbon isotope composition in the analysed TSPM samples. This large variability reflects seasonally varying contribution of different sources of fossil and modern carbon to the TSPM pool. The elemental composition of TSPM also reveals distinct seasonal variability of the analysed elements, reflecting varying mixture of natural and anthropogenic sources of those elements. A linear relationship between the fossil carbon load in the TSPM samples and the fossil carbon load in the atmospheric CO2 was found, pointing to the presence of additional source of anthropogenic carbonaceous particles not associated with burning of fossil fuels. Wearing of tyres and asphalt pavement is most probably the main source of such particles.
EN
A comparison of two methods of radiocarbon age determination of groundwater is presented. The simplest Pearson model and the “user-defined” option of the NETPATH program were considered. Both methods were used to determine the age of water from a PZ-2 piezometer that is situated in the foreground of chamber Z-32 in Wieliczka Salt Mine. Results of these calculations clearly demonstrate that 14C ages obtained by the Pearson model can be significantly overestimated in comparison with those determined by the NETPATH code. Without additional data, such as the stable isotope composition of the water, conclusions on the age of the groundwater based solely on the Pearson model may be highly inadequate.
3
Content available remote Isotopic composition of precipitation in Poland: a 44-year record
EN
Isotopic composition of precipitation (2H/1H and 18O/16O isotope ratios, tritium content) is nowadays widely used in numerous applications of environmental isotopes—most notably in hydrology, climatology and biogeochemistry. Here we present a long record (44 years) of stable isotope composition and tritium content in monthly precipitation available for the Krakow station (southern Poland). Krakow is the only site in Poland for which long-term record of the isotopic composition of monthly precipitation is available. The tritium data are discussed here in the context of generally declining levels of bomb tritium in the global atmosphere and growing influence of technogenic emissions of this isotope. Two aspects of temporal variability of stable isotope composition of precipitation collected in Krakow are discussed here: (i) seasonality and (ii) interannual changes of δ18O and δ2H signal. Whereas the seasonality of stable isotope signal is generated mainly by seasonally varying the degree of rainout of air masses bringing moisture from the source regions (subtropical Atlantic Ocean) to the centre of the European continent, the North Atlantic Oscillation seems to govern interannual changes of δ18O and δ2H on the decadal timescale. Progressing warming of the local atmosphere, in the order of 1.8 °C in the past four decades, leaves its imprint in stable isotope signal measured in Krakow precipitation; the slope of isotope–temperature relationship is in the order of 0.50‰/°C for δ18O and 3.5‰/°C for δ2H.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.