Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Sea spray volume flux estimation using joint statistics of wind and waves
EN
This article provides estimates of the sea spray volume flux using joint statistics of wind and waves. This is achieved by combining the sea spray volume flux parameterization proposed by Xu et al. (2021) with the joint statistics of wind and waves provided by Bitner-Gregersen (2015). Both the sea spray volume flux formula and the joint statistics of wind and waves represent conditions for wind waves from the North-West Shelf of Western Australia. The expected value and the variance of the sea spray volume flux for a range of realistic wind and wave conditions are presented, as well as an illustrative example. Comparison is also made with data from Xu et al. (2021) showing a reasonable agreement for the relevant subset of the data.
2
EN
This article addresses the effects of the air-sea drag coefficient on estimation of wind stress based on wind statistics. This is achieved by applying the same wind stress parameterizations chosen by Wrobel-Niedzwiecka et al. (2019) together with mean wind speed statistics from three locations in the North Atlantic and one location in the Northern North Sea. The expected values and the variances of the wind stress are provided. This study is complementary to that of Wrobel-Niedzwiecka et al. (2019), also demonstrating different results depending on the drag coefficient formula used.
3
Content available remote Note on estimating bed shear stress caused by breaking random waves
EN
This note presents a method of how the bed shear stress caused by breaking random waves on slopes can be estimated. This is obtained by adopting the Sumer et al. (2013) bed shear stress formula due to spilling and plunging breaking waves on hydraulically smooth slopes combined with the Myrhaug and Fouques (2012) joint distribution of surf similarity parameter and wave height for individual random waves in deep water. The conditional mean value of the maxima of mean bed shear stress during wave runup given wave height in deep water is provided including an example for spilling and plunging breaking random waves corresponding to typical field conditions. Another example compares the present results with one case from Thornton and Guza (1983) estimating the wave energy dissipation caused by bed shear stress beneath breaking random waves.
4
Content available remote Some probabilistic properties of surf parameter
EN
This article is supplementary to Myrhaug (2018) and presents some probabilistic properties of the surf parameter for individual waves and the spectral surf parameter for sea states by using distributions based on data from the Norwegian continental shelf. The average statistical features given by the mean value and the standard deviation of the two surf parameters are considered. Examples of results for the surf parameter are provided for a Phillips spectrum and a family of JONSWAP spectra for wind sea, and for sea states using a joint frequency table of significant wave height and mean zero-crossing wave period for combined wind sea and swell. The spectral surf parameter results are obtained by using a joint distribution of significant wave height and spectral surf parameter, and the mean statistical properties are given for joint frequency tables of significant wave height and mean zero-crossing wave period from three deep water locations on the Norwegian continental shelf. It is also demonstrated how the results can be applied to calculate the vertical wave runup elevation for breaking waves.
EN
This article addresses the Stokes drift in layers in the water column for deep water random waves based on wave statistics in terms of the sea state wave parameters significant wave height and mean zero-crossing wave period. This is exemplified by using long-term wave statistics from the North Atlantic, and is supplementary to Myrhaug et al. (2018) presenting similar results based on long-term wind statistics from the same ocean area. Overall, it appears that the results based on long-term wave statistics and long-term wind statistics are consistent. The simple analytical tool provided here is useful for estimating the wave-induced drift in layers in the water column relevant for the assessment of the transport of, for example, marine litter in the ocean based on, for example, global wave statistics.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.