Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Accurate climatic data, especially precipitation measurements, play a critical role in various studies concerning the water cycle, particularly in modeling flood and drought risks. Unfortunately, these datasets often suffer from temporary gaps that are randomly dispersed over time. This study aims to assess the effectiveness of three imputation methods: KNN, MICE, and missForest, in impute missing values in climate series. The evaluation is conducted in two distinct rainfall regimes: the Moulouya basin and the Sous Massa basin. The performance analysis considers the percentage of missing data across the entire dataset. The imputed datasets are used to estimate annual precipitation, which are then subjected to statistical tests to identify potential trends and detect changepoints. The analysis focuses on the precipitation series within the Souss Massa watershed, encompassing 27 rainfall stations. Results indicate that data imputation has a highly positive impact on the study of rainfall series trends and change point detection. The study found that studying trends without data imputation could lead to questionable conclusions. The most significant breakpoints detected in the analyzed rainfall series were in the years 1988, 1991, 1997, 2007, and 2010. The decrease in precipitation at stations showing a downward trend varies between -60 mm and -137 mm using the MICE method, and between -40 mm and 186 mm using the missForest method.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.