This research is focused on decision-making problems with redundant and incomplete information under a fuzzy environment. Firstly, we present the definition of incomplete fuzzy soft sets and analyze their data structures. Based on that, binary relationships between each pair of objects and the “restricted/relaxed AND” operations in the incomplete fuzzy soft set are discussed. After that, the definition of incomplete fuzzy soft decision systems is proposed. To reduce the inconsistency caused by the redundant information in decision making, the significance of the attribute subset, the reduct attribute set, the optimal reduct attribute set and the core attribute in incomplete fuzzy soft decision systems is also discussed. These definitions can be applied in an incomplete fuzzy soft set directly, so there is no need to convert incomplete data into complete one in the process of reduction. Then a new decision-making algorithm based on the above definitions can be developed, which can deal with redundant information and incomplete information simultaneously, and is independent of some unreliable assumptions about the data generating mechanism to forecast the incomplete information. Lastly, the algorithm is applied in the problem of regional food safety evaluation in Chongqing, China, and the corresponding comparison analysis demonstrates the effectiveness of the proposed method.
Multiple criteria decision making (MCDM) problems in practice may simultaneously contain both redundant and incomplete information and are difficult to solve. This paper proposes a new decision-making approach based on soft set theory to solve MCDM problems with redundant and incomplete information. Firstly, we give an incomplete soft set a precise definition. After that, the binary relationships of objects in an incomplete soft set are analyzed and some operations on it are provided. Next, some definitions regarding the incomplete soft decision system are also given. Based on that, an algorithm to solve MCDM problems with redundant and incomplete information based on an incomplete soft set is presented and illustrated with a numerical example. The results show that our newly developed method can be directly used on the original redundant and incomplete data set. There is no need to transform an incomplete information system into a complete one, which may lead to bad decision-making due to information loss or some unreliable assumptions about the data generating mechanism. To demonstrate its practical applications, the proposed method is applied to a problem of regional food safety evaluation in Chongqing, China.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.