Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Objectives: The main aim of this work is to introduce a robust controller for controlling the drug dosage. Methods: The presented work establishes a novel robust controller that controls the drug dosage and it also carried out parameters estimation. Along with this, a Regularized Error Function-based EKF (REF-EKF) is introduced for estimating the tumor cells that could be adapted for different conditions. It also assists in solving the overfitting problems, which occur during the drug dosage estimation. Moreover, the performance of the adopted controller is compared over other conventional schemes, and the attained outcomes reveal the appropriate impact of drug dosage injection on immune, normal, and tumor cells. It is also ensured that the presented controller does a robust performance on the parameter uncertainties. Moreover, to enhance the performance of the proposed system and for fast convergence, it is aimed to fine-tune the initial state of EKF optimally using a new Improved Gray Wolf Optimization (GWO) termed as Adaptive GWO (AGWO). Finally, analysis is held to validate the betterment of the presented model. Results: The outcomes, the proposed method has accomplished a minimal value of error with an increase in time, when evaluated over the compared models. Conclusions: Thus, the improvement of the proposed REFEKF-AGWO model is proved from the attained results.
EN
It is well-known that chemotherapy is the most significant method on curing the most death-causing disease like cancer. These days, the use of controller-based approach for finding the optimal rate of drug injection throughout the treatment has increased a lot. Under these circumstances, this paper establishes a novel robust controller that influences the drug dosage along with parameter estimation. A new nonlinear error functionbased extended Kalman filter (EKF) with improved scaling factor (NEF-EKF-ISF) is introduced in this research work. In fact, in the traditional schemes, the error is computed using the conventional difference function and it is deployed for the updating process of EKF. In our previous work, it has been converted to the nonlinear error function. Here, the updating process is based on the prior error function, though scaled to a nonlinear environment. In addition, a scaling factor is introduced here, which considers the historical error improvement, for the updating process. Finally, the performance of the proposed controller is evaluated over other traditional approaches, which implies the appropriate impact of drug dosage injection on normal, immune and tumor cells. Moreover, it is observed that the proposed NEF-EKF-ISF has the ability to evaluate the tumor cells with a better accuracy rate.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.