The individual identification of communication emitters is a process of identifying different emitters based on the radio frequency fingerprint features extracted from the received signals. Due to the inherent non-linearity of the emitter power amplifier, the fingerprints provide distinguishing features for emitter identification. In this study, approximate entropy is introduced into variational mode decomposition, whose features performed in each mode which is decomposed from the reconstructed signal are extracted while the local minimum removal method is used to filter out the noise mode to improve SNR. We proposed a semi-supervised dimensionality reduction method named exponential semi-supervised discriminant analysis in order to reduce the high-dimensional feature vectors of the signals, and LightGBM is applied to build a classifier for communication emitter identification. The experimental results show that the method performs better than the state-of-the-art individual communication emitter identification technology for the steady signal data set of radio stations with the same plant, batch and model.
Individual identification of similar communication emitters in the complex electromagnetic environment has great research value and significance in both military and civilian fields. In this paper, a feature extraction method called HVG-NTE is proposed based on the idea of system nonlinearity. The shape of the degree distribution, based on the extraction of HVG degree distribution, is quantified with NTE to improve the anti-noise performance. Then XGBoost is used to build a classifier for communication emitter identification. Our method achieves better recognition performance than the state-of-the-art technology of the transient signal data set of radio stations with the same plant, batch, and model, and is suitable for a small sample size.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.