Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In adaptive model-based control systems, determining the appropriate controller gain is a complex and time-consuming task due to noise and external disturbances. Changes in the controller parameters were assumed to be dependent on the quadcopter mass, which was the process variable. A nonlinear model of the plant was used to identify the mass, employing the weighted recursive least squares (WRLS) method for online identification. The identification and control processes involved filtration using differential filters, which provided appropriate derivatives of signals. Proportional integral derivative (PID) controller tuning was performed using the Gauss–Newton optimisa-tion procedure on the plant. Differential filters played a crucial role in all the developed control systems by significantly reducing measure-ment noise. The results showed that the performance of classical PID controllers can be improved by using differential filters and gain scheduling. The control and identification algorithms were implemented in an National Instruments (NI) myRIO-1900 controller. The nonlinear model of the plant was built based on Newton’s equations.
EN
This paper presents the synthesis of a pneumatic control system for a selected configuration of the transport path for the delivery of rolling elements to spiral storage in inter-operational transport. The sequential control system sets the state of the manifolds to ensure a flow of workpieces to serve the subsequent storage. The essential module of the control system is the memory block. It is developed based on a storage filling sequence graph. The filling level of the storages can be monitored in one or two points using sensors. The rolling element displacement control sensors work together with appropriately designed systems to execute the delay of the rising and falling edge input signal. By using a two-level control of the filling level of the storages, it is possible to control the emptying status of the storages as a function of the technological time of removal of the items from the storage between the two control points. Control systems were synthesised and verified using Festo’s FluidSim computer programme.
EN
The article presents developed method and general principles of creating ladder diagrams, which are commonly used for systems with programmable logic controllers (PLC). Ladder diagrams are created for sequential control systems of technological processes, which are described by a connection pattern, time diagrams of the executive elements` operation. The executive elements are double-acting pneumatic or hydraulic actuators controlled by bistable electrovalves. A method of designing sequential systems enabling the creation of a ladder electro-pneumatic system is presented. The ladder diagram consists of two parts. One is responsible for controlling the valve coils, the other for the implementation of the memory block. The signals that control the transition to the next state are the signals described on the boundaries of the graph division. The synthesis of control systems and their verification was carried out using the computer aided program FluidSim by Festo.
EN
This article is a presentation of the analysis of new class of logarithmic analog-to-digital converter (LADC) with accumulation of charge and impulse feedback. Development of mathematical models of errors, quantitative assessment of these errors taking into account modern components and assessing the accuracy of logarithmic analog-to-digital converter (LADC) with accumulation of charge and impulse feedback were presented. (Logarithmic ADC with accumulation of charge and impulse feedback – analysis and modeling).
EN
This article is a presentation of the analysis of new class of logarithmic analog-to-digital converter (LADC) with accumulation of charge and impulse feedback. LADC construction, principle of operation and dynamic properties were presented. They can also be part of more complex converters and systems based on LADC. LADC of this class is perspective for implementation in the form of integrated circuit, as the number of switched capacitors needed to conversion is minimized to one capacitor. (Logarithmic ADC with accumulation of charge and impulse feedback – construction, principle of operation and dynamic properties).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.