Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Allelochemicals have emerged as an important player in inducing the abiotic stress tolerance. The experiment included three components: different levels of salinity stress (SS: control, 6 dS m-1, 12 dS m-1), seed priming with moringa leaf extract (MLE: 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%), and saltwater-tolerant and salinity-sensitive wheat cultivars (Faisalabad-2008, Galaxy-2013). Results showed that salinity lowered photosynthetic pigments, photosynthesis, transpiration, internal carbon, and stomatal conductance while causing poor and delayed germination, inconsistent seedling growth, and increased hydrogen peroxide accumulation. However, hydro-priming and MLE priming enhanced emergence dynamics, growth, biochemical and enzymatic characteristics, and physiological aspects. The cultivar Faisalabad-2008 (wheat) performed well, but at high salinity levels, the hormetic impact of moringa leaf extract was more obvious, enhancing the germination and growth of cultivar Galaxy-2013, which was salinity-sensitive. Wheat cultivars’ germination and seedling growth improved most when primed with 2% MLE (Faisalabad-2008) and 2.5% MLE (Galaxy-2013). This demonstrated that moringa possesses growthpromoting compounds that efficiently mitigate the toxic impacts of salinity.
EN
Oat is an important winter fodder crop grown in large areas all over the world. Oat is a good source of nutrition and energy, but it is poor in zinc. Presently, livestock is suffering from malnutrition due to a deficiency of zinc, which has a greater impact on livestock and ultimately on human health. An easy and cost-effective approach to adding nutrients to plants without altering their genetic makeup is agronomic biofortification. Application of nutrients to oat via bio-fortification may enhance the overall biomass production and quality of fodder. Hence, a field study was performed to understand the impact of bio-fortification with zinc on quality along with biomass production of oats. Treatment comprised of control (No Zn), Zn at 4 kg soil application, Zn at 6 kg soil application, Zn at 8 kg soil application, Zn at 4 kg soil application+0.5% zinc sulfate as foliar application, Zn at 6 kg soil application+0.5% zinc sulfate as foliar application and Zn at 8 kg soil application+0.5% zinc sulfate as foliar application. The study revealed that Zn at 6 kg soil application+0.5% zinc sulfate foliar application produced maximum plant height (207.7 cm), leaf area index (15.78), crop growth rate (9.1 gm-2day-1), stem diameter (0.073 cm), number of tillers (204), fresh fodder yield (76.6 t·ha-1), dry matter yield (32.27 t·ha-1), ash contents (10.3%) and plant zinc contents (70.0 ppm). Control treatment produced maximum crude fiber contents (40.70%), acid detergent fiber contents (35.77%), and neutral detergent fiber contents (72.71%). In conclusion, the bio-fortification of zinc not only enhanced the biomass and yield of oat but also increased the availability of zinc in plants.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.