Many countries worldwide support green energy production on large scale mostly by solar or wind energy subsidizing manufacture and operation of such systems. During the last two decades, there has been significant increase in wind energy production globally. Statistics show continuously growing investments in the development and installation of wind turbines and farms. Currently, wind energy is the second most important source of renewable energy after water energy. By 2016 global cumulative installed wind capacity surpassed 432 k MW [GWEC]. In last several years, most dynamic growth in wind power generation investments was recorded in Asia. Europe, in comparison, has less impressive but steady growth in wind power plants through the years. In this article, authors present global demand on energy in comparison to efficiency of wind power plants in relation to the local and global location as well as to the scale of installed system. Authors also present statistical data concerning wind power plants development. General classification, using number of criteria (ex. power output, construction size, rotor axis orientation and other) of wind to electric power converting devices is presented. Various types of devices, which authors describe in this article, can perform conversion of wind blow energy to the electric energy using different yet similar methods.
The tests described in the article are related to the project of a high-altitude scientific rocket, which is expected to be built in the Institute of Aviation. The unguided rocket will be launched from a platform with a relatively long start beam and will be supported by slides at the start. Because of the relatively high rocket mass and nearly horizontal start needed for initial rocket tests, its slides will be under extremely high load defined as a combination of pressure and sliding velocity. In addition to the mechanical load, the slides will be also loaded thermally because of the friction in a pair: slide-guide rail (made of hard-anodized aluminium alloy). This leads to rapid wear of the slides. The aim of the tests was to establish what the friction coefficient between the slide and the guide rail is (as function of mechanical load) and how big slide-wear in a single work cycle (simulation of a single rocket launch) is. The tests were performed for few material samples: two modern plastics used in so-called “linear systems” (offered by a firm, which is one of the leaders on this market), samples made of well-known and widely used materials like cotton-phenolic textolite and well-known samples of material called Teflon (PTFE – polytetrafluoroethylene) with 15% addition of graphite. Results show that the temperature resistant plastic used in general linear systems at our condition are on the verge of wear according to our model. Textolite and Teflon with graphite addition have better characteristics of wear. They can be safely used as material of slides.
Landing gear as one of the most crucial systems ensuring safe take-off and landing must be rigorously tested before first flight of each newborn aeroplane. In the static and dynamic tests strength, functionality and energy absorption capability of landing gear components (wheel, brake, shock absorber, support structure and retraction system) are verified. One of the most important is an energy absorption dynamic test. During drop, test campaign a landing gear damping system is not only verified but also optimized by changing parameters like: damping orifice diameter, geometry of gas and oil chambers and shock absorber and tire inflation pressures. This process often takes substantial amount of time because of influence of the mentioned parameters on landing gear energy absorption efficiency. Other factors like landing configuration spin up and spring back effects generated during wheel contact with the ground [1] also have to be considered in the energy absorption optimization process. The paper describes the landing gear drop test campaign and main challenges, which have to be overcome to achieve optimal dynamic characteristics of the system. The tested object was the main landing gear of the 1400 kg General Aviation aircraft certified in accordance with EASA CS-23 regulations. The drop test campaign was carried out in Warsaw Institute of Aviation Landing Gear Laboratory.
One of the most important systems responsible for safe take-off and landing of aircraft is a landing gear system. Regardless of the configuration and the type of landing gear, its main function is to absorb energy from landing. The aim of this paper is to describe design and numerical optimization of modern tricycle-type, retractable landing gear system equipped with oleo-pneumatic amortization and mechanical emergency release. The landing gear was designed for a new prototype of 4 seats 1400 kg (AT-6) take-off mass aircraft in accordance with Certification Specifications for Normal, Utility, Aerobatic and Commuter Category Aeroplanes – CS-23. A complete design process from concept to final version was performed in Warsaw Institute of Aviation’s Landing Gear Laboratory. Proposed retractable landing gear concept substantially reduces aerodynamic drag of aircraft. Although application of one retraction system for the left and right gear make the system more complicated, this solution significantly reduces weight. The authors, because of the project complexity, focused on most important aspects of the main landing gear design and described numerical optimization of chosen components like composite leg with main and upper aluminium fittings. Engineers involved in the project used SolidEdge software for 3D modelling, kinematics optimization and 2D documentation preparation. Strength and stiffness analysis was carried out using hand and numerical calculation methods – FEMAP with NX Nastran and Hyperworks software.
Energy absorption during landing process is one of the most important processes in space and aviation. Wrong design in this field can cause damage or destruction of the landing object. As for now most of the energy absorption is performed using mechanical systems from parachutes to shock absorbers. Due to mass restrictions and economical reasons, space industry aims to replace mechanical systems with material based absorption. In the RASTAS Spear project ILot Landing Gear Department engineers analysed, tested and calculated possible energy absorption materials in order to check and evaluate their usefulness in space applications. In this paper authors described the entire process which led to the design of the structure capable of efficient and reliable energy absorption in a small space lander.
PL
Pochłanianie energii podczas lądowania jest jednym z ważniejszych procesów zachodzących podczas lądowania w lotnictwie jak i w pojazdach kosmicznych. Źle zaprojektowane układy pochłaniani energii mogą doprowadzić do uszkodzenia lub zniszczenia lądującego obiektu. Na chwilę obecną większość pochłaniania energii lądowania realizowana jest za pomocą układów mechanicznych począwszy od spadochronów a skończywszy na amortyzatorach. Ze względów masowych oraz ekonomicznych, przemysł kosmiczny dąży do zastąpienia układów mechanicznych przez układy oparte na materiałach energochłonnych. W projekcie RASTAS Spear inżynierowie Pracowni Podwozi Instytutu Lotnictwa dokonali wstępnej analizy, badań i niezbędnych obliczeń w celu oceny i właściwego doboru materiałów energochłonnych spełniających kryteria przydatności w zastosowaniach kosmicznych. W artykule autorzy opisują proces doświadczalnego doboru materiału energochłonnego, który doprowadził do projektu układu pochłaniania energii lądowania lądownika kosmicznego.
Strain gage sensing is widely used method for measurements conducted during dynamic tests. This article describes electrical resistance strain gages performing force measurement during the tests of main and nose landing gear of medium-lift civil aircraft. It is the most common method used for measuring mechanical properties like force, pressure, stress, strain, etc. Strain gages were installed in selected areas of the Drop Test Stand. The paper presents advantages of strain gage measuring method in regards to commercially available, ready-made force sensors. Furthermore, it describes the process of selecting strain gage and load cell measurement systems (bridge, half bridge, quarter bridge) and its influence on the test results. What is more the technological process is presented, taking into account the strain gage installation adhesive technology and sensor protection against external conditions, performance of the measurement system and connection to the data acquisition system. Continuing with the process description of calibrating a load cell system for measuring the occurring forces. The article is summed up with an analysis of the problems which arise during the installation and measurement process using strain gages, and includes a description of advantages and disadvantages that occur while applying strain gages while preforming force measurement.
Niezwykle istotne są badania lotniskowe, które wykonuje się w przypadku bardzo innowacyjnych konstrukcji lotniczych. Hamulce pojazdów mechanicznych ze względu na rolę, jaką spełniają podlegają restrykcyjnym badaniom. Badania te przeprowadzane są na poziomie wdrożenia nowej konstrukcji do użytkowania oraz w trakcie trwania eksploatacji. Szczególnie dokładne badania dotyczą hamulców o dużej energochłonności przeznaczonych do statków powietrznych, czasem do ciężkich samochodów mogących poruszać się ze znacznymi prędkościami. Hamulce lotnicze bada się według zasad oraz na urządzeniach niespotykanych dla innych rodzajów pojazdów. Jednocześnie niedopuszczalna jest sytuacja zmiany konstrukcji, bez uprzedniego przebadania hamulca. W artykule autorzy przedstawią wytyczne do badań hamulców lotniczych z ABS-em przeprowadzanych w warunkach terenowych na lotnisku.
EN
Ground tests of innovative aircraft structures are extremely important in order to prevent design errors. The vehicle brakes are subject to strict testing due to the their role. High energy brakes for aircraft as well as for heavy ground vehicles that could move at significant speeds are the subject for the strict test procedures. Aircraft brakes are tested for the compliance with aviation regulations using special designed test rigs. What is more brake design cannot be changed without verification tests. In this paper, the authors present guidelines for ground tests of aircraft brakes with antilock system.
Badania laboratoryjne są bardzo istotnym zagadnieniem w procesie powstawania nowej konstrukcji a w szczególności elementu podwozia lotniczego jakim jest piasta koła. Koło lotnicze musi spełniać wymogi bezpieczeństwa (odpowiednio wytrzymałe), a ponadto musi być lekkie (z ekonomicznego względu.) Pomimo procesu zaawansowanych analiz i symulacji, proces certyfikacji wymaga potwierdzenia spełnienia założeń konstrukcyjnych w testach laboratoryjnych. W artykule przedstawiono proces badania piasty koła lotniczego z plastycznie kształtowanego stopu magnezu. Próby zostały przeprowadzone w Laboratorium Badań Podwozi Lotniczych Instytutu Lotnictwa w Warszawie. Opisano metodykę badań krok po kroku próby ciśnieniowe, testy statyczne, oraz badania długotrwałe dynamiczne poprzez toczenie. Całość postępowania z nowym prototypem piasty koła lotniczego potwierdza poprawność dobranej technologii wykonania piasty oraz założenia projektowe.
EN
Laboratory tests are significant part of new construction design process in aviation industry. Every new aircraft part has to be tested in order to prove its reliability and functionality. Testing process is most important for parts which are connected with safety of people onboard of the aircraft Aviation wheel hub is one of such safety important parts of aircraft. Hub must be as durable as possible (due to safety requirements) and light (due to economical impact). Besides of extensive design phase analysis and simulations, certification process requires laboratory confirmation of design assumptions. In this article author wants to present laboratory testing process of forged magnesium alloy aviation wheel hub. All of the tests were performed in Landing Gear Testing Laboratory of Institute of Aviation in Warsaw (Laboratorium Badań Podwozi Lotniczych Instytutu Lotnictwa w Warszawie). Author describes full wheel hub laboratory testing methodology including pressure tests, static tests and dynamic tests of wheel rotation. All of performed tests were made on magnesium alloy hub and resulted in confirmation of both design and manufacturing technique assumptions.
This article presents selected issues related to the selection methodology of the brake linings during the research process. It is a very important issue due to effect on the vehicle safety. Safety concerns are applicable to both road/track vehicles and aircraft. Scientific institutions and research centers make continuous efforts in order to improve brake lining materials and full-scale brakes. Analytical prediction of the friction material properties and behavior is not accurate enough due to complexity of the physical phenomena. Analysis of the friction materials is difficult due to scarce of data given by the manufacturers. Every friction material needs to be tested in order to prove its properties. First stage of the selection is the tests made in laboratory using both model and full-scale techniques. Because of the laboratory tests, following parameters are obtained: weight and geometrical brake wear, braking torque, friction coefficient and brake temperature. All of these factors must be taken into account for linings selection and design a prototype of the brake. Selection of the friction material can be performed in consideration of various requirements of the brake system users and law defined factors. Authors of the paper base on the extensive experience of the Institute of Aviation, Landing Gear Laboratory tests of brake linings.
Podwozia lotnicze są jednym z podstawowych układów funkcjonalnych statków powietrznych, bez którego niemożliwe byłoby ich użytkowanie. Mogą przybierać różne formy w zależności od przyjętych parametrów. Wiropłatowe statki powietrzne wymagają specyficznej funkcjonalności podwozi, którą autorzy postarają się przedstawić na przykładzie podwozia do obiektu typu wiatrakowiec. Wiatrakowiec jest szczególnym rodzajem wiropłatu, który zyskuje na popularności dzięki nieskomplikowanej budowie i obsłudze przy okazji łącząc w sobie zalety samolotu i śmigłowca. Dla inżynierów skonstruowanie tego typu pojazdu jest sporym wyzwaniem ze względu na konieczność połączenia niezawodnej, prostej i taniej konstrukcji z wyśrubowanymi normami bezpieczeństwa statków powietrznych. Spełnienie wymagań certyfikacji jest trudne szczególnie w przypadku wprowadzania do projektu własnych niestosowanych wcześniej rozwiązań. Doświadczenie kadry inżynierskiej Pracowni Podwozi Instytutu Lotnictwa, pozwoliło na zaprojektowanie podwozia mieszczącego się w granicach założonych przez projekt, a przy okazji przyczyniło się do stworzenia unikalnych rozwiązań konstrukcyjnych.
EN
Aircraft landing gear is one of essential functional system of the aircraft without which it would be impossible to use one. Landing gears can be in built in different forms in order to meet design assumptions. Rotorcrafts are the aircrafts requiring specific functionality from the landing gears which will be described in this article using I28 gyroplane as an example.
Podwozia lotnicze są jednym z podstawowych układów funkcjonalnych statków powietrznych, bez którego niemożliwe byłoby ich użytkowanie. Mogą przybierać różne formy w zależności od przyjętych parametrów. Wiropłatowe statki powietrzne wymagają specyficznej funkcjonalności podwozi, którą autorzy postarają się przedstawić na przykładzie podwozia do obiektu typu wiatrakowiec.
EN
Aircraft landing gear is one of essential functional system of the aircraft without which it would be impossible to use one. Landing gears can be in built in different forms in order to meet design assumptions. Rotorcrafts are the aircrafts requiring specific functionality from the landing gears which will be described in this article.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.