The application of luminescence dating to young volcanic sediments has been first investigated over three decades ago, but it was only with the technical innovations of the last decade that such analyses became viable. While current analytical procedures show promise for dating late Quaternary volcanic events, most efforts have been aimed at unconsolidated volcanic tephra. Investigations into direct dating of lava flows or of non-heated volcanoclastics like phreatic explosion layers, however, remain scarce. These volcanic deposits are of common occurrence and represent important chrono- and volcanostratigraphic markers. Their age determination is therefore of great importance in volcanologic, tectonic, geomorphological and climate studies. In this article, we propose the use of phreatic explosion deposits and xenolithic inclusions in lava flows as target materials for lumines-cence dating applications. The main focus is on the crucial criterion whether it is probable that such materials experience complete luminescence signal resetting during the volcanic event to be dated. This is argued based on the findings from existing literature, model calculations and laboratory tests.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Recent developments in optically stimulated luminescence (OSL) dating allow the determination of signals in increasingly smaller sample amounts. This has led to microdosimetry having a larger impact on equivalent dose (DE) distributions and therefore, detection and assessment of spatial distribution of radionuclides has become more important. This study demonstrates the application of autoradiography using imaging plates to determine spatially resolved radiation inhomogeneities in different types of samples. Qualitative evaluations of radiation inhomogeneity are carried out on unconsolidated sediments as well as on hard rock samples. While indicating some limitations of applicability, the results demonstrate that the method is an efficient tool to detect and document spatial variations in a sample’s radiation field. It therefore provides a possibility to rapidly screen samples to check whether microdosimetry might affect the DE data. Furthermore, an approach to calibrate autoradiographic images for quantitative use is suggested. Using pressed powder pellets of reference materials, a series of calibration images were exposed, from which a functional relation between specific sample activity and greyscale value in the autoradiographic image has been deduced. Testing the calibration on a set of 16 geological samples, of which their radionuclide content is known, shows a good correlation between specific activities calculated from the nuclide content and specific activities deduced from the autoradiographic images. These findings illustrate the potential of autoradiography with imaging plates to detect spatial distributions of radionuclides and to tackle certain aspects of the problem of microdosimetry in modern trapped charge dating.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.