Planning problems deal with finding a sequence of actions that transfer the initial state of the world into a desired state. Frequently such problems are solved by dedicated algorithms but there exist planners based on translating the planning problem into a different formalism such as constraint satisfaction or Boolean satisfiability and using a general solver for this formalism. The paper describes how to enhance existing constraintmodels of sequential planning problems by using techniques such as symmetry breaking (dominance rules), singleton consistency, nogoods, lifting, or techniques motivated by the partial-order planning.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Planning and scheduling are two closely related areas that, despite their similarity, deal with different problems. While the planning ask is to decide which actions are necessary to achieve a given goal, the scheduling task is to allocate known activities to scarce resources, such as machines, over time. Typically planning and scheduling problems are solved separately using different solving techniques. However, real-life problems require a more integrated approach. Constraint satisfaction seems to be such a unifying solving technology for both planning and scheduling problems. This paper describes how constraint satisfaction techniques can be applied to planning and scheduling problems.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.