The problem of unequal facility location involves determining the location of a set of production equipment whose dimensions are different, as well as the interrelationships between each of them. This paper presents an efficient method for optimizing the problem of unequal facility layouts. In this method, the genetic algorithm is improved and developed into an adaptive genetic algorithm. In this algorithm, the mutation operator is applied only when the similarity of chromosomes in each population reaches a certain level. This intelligence prevents jumps in situations where they are not needed and reduces computational time. In order to measure the performance of the proposed algorithm, its performance is compared with the performance of conventional genetic algorithms and refrigeration simulators. Computational results show that the adaptive genetic algorithm is able to achieve higher-quality solutions.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Recently, due to the increasing awareness of communities regarding environmental issues and environmental regulations, companies have evolved to provide products with lower prices and better quality to retain and attract customers. Economics should also pay attention to environmental goals. Therefore, it is essential to provide a supply chain model that can consider both economic and environmental objectives. In this paper, the green direct supply chain network is presented to an automotive company, including five suppliers, primary warehouses, manufacturing plants, distributors, and sales centers. The objectives of this model are to minimize the total cost of construction, transportation, and the amount of carbon dioxide emissions during forwarding network transportation at all levels. The proposed model is also drawn using the weight method, which is one of the methods for solving multi-objective problems, and the solution of the model part. Ultimately, it has been discussed how much the automobile company should focus on reducing carbon dioxide so that managers can determine the best solutions from the Pareto border according to their organization's priorities, which can be environmental or financial.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In recent years, the increase in population and the decrease in agricultural lands and water shortages have caused many problems for agriculture and farmers. That is why scheduling is so important for farmers. Therefore, the implementation of an optimal schedule will lead to better use of agricultural land, reduce water consumption in agriculture, increase efficiency and quality of agricultural products. In this research, a scheduling problem for harvesting agricultural products has been investigated. InPaper this problem, there are n number of agricultural lands that in each land m agricultural operations are performed by a number of machines that have different characteristics. This problem is modeled as a scheduling problem in a flexible workshop flow environment that aims to minimize the maximum completion time of agricultural land. The problem is solved by programming an integer linear number using Gams software. The results show that the proposed mathematical model is only capable of solving small and medium-sized problems, and due to the Hard-NP nature of the problem, large-scale software is not able to achieve the optimal solution.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.