This paper is concerned with the linear theory of heat propagation in a binary mixture of rigid heat conductors. First, the equilibrium theory is studied. A solution of Galerkin type is established and fundamental solutions are derived. The potentials of single-layer and double-layer are used to reduce the boundary value problems to singular integral equations. Existence and uniqueness results are established. The second part of the paper is concerned with the dynamical theory. A continuous dependence result and a spatial decay estimate are derived.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.