Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The cartography and quantification of irrigated fields in the context of decreasing rainfall constitute a key element for water resources management. Therefore, in this context, the use of remote sensing methods applied to Landsat-type images with a high spatial resolution for monitoring the changes in land use in general and irrigated crops, in particular, is highly relevant. This paper aims to present a method for mapping spatial and temporal changes in irrigated parcels in the Guigou Plain, located in the central Middle Atlas, based on Landsat images and fieldwork. For the years 1985, 1998, 2010 and 2018, the use of a supervised classification method based on the principle of machine learning, fed by precise field surveys, has made it possible to highlight a significant extension of irrigated areas to the expense of pastureland and rainfed crops. Over the entire period under consideration, the results obtained with good precision (98.5% overall accuracy) showed that the area under irrigated crops has increased from approximately 699 ha to 3988 ha, i.e. an increase of 570%. The corollary of this increase is strong pressure on the water resource, especially groundwater. This information on the total extension of irrigated plots can be taken as a reference in the perspective of reasoned management of water resources in the sector.
EN
In order to analyze the impact of land use and land cover change on land surface temperature (LST), remote sensing is the most appropriate tool. Land use/cover change has been confirmed to have a significant impact on climate through various aspects that modulate LST and precipitation. However, there are no studies which illustrate this link in the Fez-Meknes region using satellite observations. Thus, the aim of this study was to monitor LST as a function of the land use change in the Saïss plain. In the study, 12 Landsat images of the year 2019 (one image per month) were used to represent the variation of LST during the year, and 2 images per year in 1988, 1999 and 2009 to study the interannual variation in LST. The mapping results showed that the land use/cover in the region has undergone a significant evolution; an increase in the arboriculture and urbanized areas to detriment of arable lands and rangelands. On the basis of statistical analyses, LST varies during the phases of plant growth in all seasons and that it is diversified due to the positional influence of land use type. The relationship between LST and NDVI shows a negative correlation (LST decreases when NDVI increases). This explains the increase in LST in rangelands and arable land, while it decreases in irrigated crops and arboriculture.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.